Abstract:
An organic light emitting diode (OLED) display device includes a display panel having a display region and a peripheral region, an OLED at the display region and including an end connected to a first voltage, a pixel circuit at the display region, a repair pixel circuit at the peripheral region, a repair line for connecting the repair pixel circuit to the OLED, and a switching circuit configured to apply a second voltage to the repair line during a power-up of the OLED display device.
Abstract:
An organic light emitting display device includes a display area and a non-display area. The display area includes display pixels at crossing areas of data lines, scan lines, and emission control lines. The non-display area includes auxiliary pixels at crossing positions of auxiliary data lines, scan lines, and emission control lines. The display device also includes a scan driver to supply scan signals to the scan lines, a first data driver to supply data voltages to the data lines, a second data driver to supply an auxiliary data voltage to the auxiliary data line, and a demultiplexer between the data lines and the first data driver.
Abstract:
An organic light emitting diode (OLED) display device includes a display panel having a display region and a peripheral region, an OLED at the display region and including an end connected to a first voltage, a pixel circuit at the display region, a repair pixel circuit at the peripheral region, a repair line for connecting the repair pixel circuit to the OLED, and a switching circuit configured to apply a second voltage to the repair line during a power-up of the OLED display device.
Abstract:
An organic light emitting display device includes data lines and an auxiliary data line, scan lines and emission control lines crossing the data lines and the auxiliary data line, display pixels at crossing regions of the data lines, the scan lines and the emission control lines, auxiliary pixels at crossing regions of the auxiliary data line, the scan lines and the emission control lines, and auxiliary lines coupled to the auxiliary pixels. Each of the auxiliary pixels includes a discharge transistor coupled to one of the auxiliary lines and a first power voltage line to which a first power voltage is supplied and a discharge transistor controller including a plurality of transistors and configured to control the discharge transistor.
Abstract:
A display device includes a substrate, one line on the substrate, the one line extending from a peripheral region through a display region, pixels on the display region, the pixels being connected to the one line, an outer line on the peripheral region, the outer line being connected to the one line during a short circuit test process that detects a position of a short circuit defect, an electrostatic protection resistor on the peripheral region, the electrostatic protection resistor being connected to the outer line, a pad on the peripheral region, the pad being connected to the outer line through the electrostatic protection resistor, a short circuit test signal being applied to the pad during the short circuit test process, and a bypass line connecting a node between the pad and the electrostatic protection resistor to the outer line.
Abstract:
An organic light emitting display device includes: data lines and auxiliary data lines, scan lines and light emission control lines crossing the data lines and the auxiliary data lines, a display area including display pixels formed at crossing regions of the data lines, the scan lines, and the light emission control lines, a non-display area including auxiliary pixels formed at crossing regions of the auxiliary data lines, the scan lines, and the light emission control lines, and auxiliary lines connected to the auxiliary pixels. Each of the auxiliary pixels may include: an auxiliary pixel driver configured to supply a driving current to a corresponding one of the auxiliary lines, and an auxiliary transistor connected to the corresponding one of the auxiliary lines and to a first power voltage line, configured to transmit a first power voltage from the first power voltage line, in response to a control signal.
Abstract:
An organic light emitting display device including data lines, an auxiliary data line, and a compensation data line, a display area including display pixels connected to the data lines, a nondisplay area including auxiliary pixels connected to the auxiliary data line, and compensation pixels connected to the compensation data line, and auxiliary lines connected to the auxiliary pixels and the compensation pixels.
Abstract:
An organic light-emitting display device and a method of driving the display device are disclosed. A pixel circuit used in the organic light-emitting display device includes a first switching transistor, a second switching transistor and a driving transistor. The first switching transistor switches a data voltage in response to a first control signal. The second switching transistor switches a compensation voltage in response to a second control signal. The driving transistor provides an electric current to an organic light-emitting device in response to the data voltage and the compensation voltage.
Abstract:
An organic light emitting display device employing organic light emitting diodes (OLEDs) is disclosed. One aspect includes a plurality of pixels positioned at intersection portions of scan lines and data lines, each having an organic light emitting diode and a pixel circuit driving the organic light emitting diode; a scan driver supplying a scan signal to the scan lines and supplying an emission control signal to an emission control line coupled to the pixels; and a data driver supplying a data signal to the data lines. In such organic light emitting display, the pixel circuit within each pixel includes three or more transistors and one or more capacitors, and the transistors included in a pixel circuit of some of the pixels is formed to be in a state in which the transistor is isolated from the other circuit devices in the pixel circuit or in a state in which the electrodes of the transistor are short-circuited.
Abstract:
A display device and a method of driving the same in which moving image blurring is prevented and a contrast ratio is enhanced by providing a light-emitting element, switching transistors, and a driving transistor with driving signals that include specific voltages at predetermined times, so that the light-emitting element does not emit light for an entire frame and the light output is not influenced by a threshold voltage of the driving transistor.