Abstract:
A display panel includes input power supply line coupled to a power supply at one or more edge portions of the display panel, and an output power supply line coupled to the input power supply line at a predetermined portion of the display panel. The input power supply line receives the power supply voltage, and the output power supply line receives the power supply voltage from the input power supply line. The power supply is coupled to the output power supply line at the one or more edge portions of the display panel, and receives the power supply voltage from the output power supply line to adjust a voltage level of the power supply voltage based on the power supply voltage from the output power supply line. The predetermined portion is at a location different from an edge of the display panel.
Abstract:
A display panel module, organic light-emitting diode (OLED) display and method of driving the same are disclosed. In one aspect, the module includes a display panel divided into a first portion and a second portion and a plurality of scan and data lines divided into groups arranged in the first and second potions. The module further includes a first scan driver configured to sequentially apply scan signals to each of the first and second scan line groups. The first scan driver is further configured to substantially simultaneously apply the scan signals to corresponding scan lines of the first and second scan line groups. The module also includes a first data driver configured to output first data voltages to the first data line group and a second data driver configured to output second data voltages to the second data line group with the same timing as the first data driver.
Abstract:
An organic light emitting diode (OLED) display and driving method thereof are disclosed. One inventive aspect includes a plurality of pixels, a scan driver, first and second power generation unit and a data driver. The scan driver supplies a first scan signal to odd-numbered scan lines during a first period and a second scan signal to even-numbered scan lines during a second period. The first and second power generation units set the pixels in a non-emission state during at least one frame of the first and second periods. The data driver supplies a data signal to data lines synchronous to the first and second scan signal.
Abstract:
A method of digital-driving an organic light emitting display device includes analyzing a light emission pattern of the input image data and converting a third grayscale of the input image data into a first converted grayscale and a second converted grayscale based on an analysis result of the light emission pattern of the input image data.
Abstract:
A method of displaying a stereoscopic image and a display device are disclosed. In one aspect, the method includes sequentially writing black data to a portion of the pixel rows during a portion of a first frame period and sequentially writing left eye image data to the pixel rows during the remaining portion of the first frame period and during a second frame period. The method also includes driving the pixel rows to simultaneously emit light during a first emission period, sequentially writing the black data to the portion of the pixel rows during a portion of a third frame period, and sequentially writing right eye image data to the pixel rows during the remaining portion of the third frame period and during a fourth frame period. The method further includes driving the pixel rows to simultaneously emit light during a second emission period corresponding to the fourth frame period.