Abstract:
In one embodiment, a device can comprise: a light emitting diode located in a housing. The housing is formed from a polymer composition comprising: a polymer material, wherein the polymer material comprises at least one of polyolefins, polyesters, cyanoacrylate, cellulose triacetate, ethyl vinyl acetate, propyl vinyl acetate, polyvinylbutyral, polyvinyl chloride, polycarbonate, polyethylene naphthalate, polyurethane, thermoplastic polyurethane, polyamide, polymethyl methacrylate, polystyrene, cellulose nitrate, and combinations comprising at least one of the foregoing polymer materials; and a coated conversion material wherein the coated conversion material comprises an inorganic material that converts radiation of a certain wavelength and re-emits of a different wavelength. The coated conversion material can have a coating comprising at least one of a silicone oil and amorphous silica and, after the coated conversion material has been exposed to an excitation source, it can have a luminescence lifetime of less than 10−4 seconds when the excitation source is removed.
Abstract:
In some embodiments, a composition comprises a bisphenol-A polycarbonate, wherein a molded article of the bisphenol-A polycarbonate has transmission level greater than or equal to 90.0% at 2.5 mm thickness as measured by ASTM D1003-00 and a yellow index (YI) less than or equal to 1.5 as measured by ASTM D1925. In some embodiments, light emitting device comprises: a lighting element located in a housing. The housing is formed from a plastic composition comprising: the polycarbonate composition and a conversion material. After the conversion material has been exposed to an excitation source, the conversion material has a luminescence lifetime of less than 10−4 seconds when the excitation source is removed.
Abstract:
A thermoplastic composition comprising: a polymer material; and a passivated inorganic chromophore comprising an inorganic chromophore and a passivation layer, wherein the inorganic chromophore has the formula: AM1-xM?xM?yO3+y, wherein A, M, M?, M?, x, and y are as provided herein, and wherein the passivation layer is derived from a passivation material comprising a polysiloxane having at least one functional group that is hydride, hydroxy, alkoxy, aryloxy, epoxy, carboxy, amino, or a combination thereof.
Abstract:
A thermoplastic composition includes: from about 5 wt % to about 70 wt % poly(methyl methacrylate) (PMMA); from about 15 wt % to about 50 wt % of a first poly(carbonate-siloxane) copolymer having a siloxane content of from about 35 wt % to about 45 wt %; and from about 10 wt % to about 45 wt % of a second poly(carbonate-siloxane) copolymer. The second poly(carbonate-siloxane) copolymer has a siloxane content of from about 15 wt % to about 25 wt % or from about 4 wt % to about 8 wt %.
Abstract:
A method of determining degradation of a thermoplastic when exposed to light and heat includes illuminating the thermoplastic with a desired wavelength of light at a desired irradiance while maintaining the thermoplastic at a desired temperature. The method is useful to measure the discoloration rate of transparent, translucent and opaque thermoplastics such as polycarbonates, the discoloration rate being determined by transmission or reflectance spectra of transmitted or reflected white light through or from the thermoplastic.
Abstract:
In some embodiments, a composition includes: a conversion material and a bisphenol-A polycarbonate; wherein a molded article of the bisphenol-A polycarbonate has a transmission level of greater than or equal to 90.0% at a thickness of 2.5 mm as measured by ASTM D1003-00; and wherein the molded article comprises an increase in the yellow index of less than 2 during 2,000 hours of heat aging at 130° C.; and wherein the conversion material comprises a yellow conversion material, a green conversion material, a red conversion material, or a combination comprising at least one of the foregoing.
Abstract:
A method of determining degradation of a thermoplastic when exposed to light and heat includes illuminating the thermoplastic with a desired wavelength of light at a desired irradiance while maintaining the thermoplastic at a desired temperature. The method is useful to measure the discoloration rate of transparent, translucent and opaque thermoplastics such as polycarbonates, the discoloration rate being determined by transmission or reflectance spectra of transmitted or reflected white light through or from the thermoplastic.
Abstract:
Process for manufacturing a densified polymer powder comprising compressing a polymer feed that has a bulk density of less than or equal to 240 kg/m in a roll compactor comprising at least two compaction rolls to obtain a densified polymer material, wherein a gap between the two rolls is 0.5 to 10 mm, wherein the compaction rolls operate at a speed of 3 to 30 rpm, wherein an applied pressure of the roll compactor is 0.5 to 5 MPa, and milling the densified polymer material to obtain a densified polymer powder, wherein a bulk density of the densified polymer powder is greater than or equal to 250 kg/m3.
Abstract:
A method of determining degradation of a thermoplastic when exposed to light and heat includes illuminating the thermoplastic with a desired wavelength of light at a desired irradiance while maintaining the ambient air surrounding the thermoplastic at a desired temperature. The method is useful to measure the discoloration rate of transparent, translucent and opaque thermoplastics such as polycarbonates, the discoloration rate being determined by transmission or reflectance spectra of transmitted or reflected white light through or from the thermoplastic.
Abstract:
In one embodiment, a device can comprise: a light emitting diode located in a housing. The housing is formed from a polymer composition comprising: a polymer material, wherein the polymer material comprises at least one of polyolefins, polyesters, cyanoacrylate, cellulose triacetate, ethyl vinyl acetate, propyl vinyl acetate, polyvinylbutyral, polyvinyl chloride, polycarbonate, polyethylene naphthalate, polyurethane, thermoplastic polyurethane, polyamide, polymethyl methacrylate, polystyrene, cellulose nitrate, and combinations comprising at least one of the foregoing polymer materials; and a coated conversion material wherein the coated conversion material comprises an inorganic material that converts radiation of a certain wavelength and re-emits of a different wavelength. The coated conversion material can have a coating comprising at least one of a silicone oil and amorphous silica and, after the coated conversion material has been exposed to an excitation source, it can have a luminescence lifetime of less than 10−4 seconds when the excitation source is removed.