Abstract:
A video encoding device comprises a memory configured and at least one processor configured to: determine whether a metric meets a condition based on statistics, wherein the statistics are associated with a first video encoding mode checking order and a second video encoding mode checking order, responsive to determining that the metric meets the condition, select a first encoding mode checking order to encode the first block of video data responsive to determining that the condition is not met, select a second encoding mode checking order different from the first encoding mode checking order to encode the first block of video data, update the statistics based on the selected first or second encoding mode checking order, and encode a second block of video data, based on the updated statistics, and using the first or second mode checking order.
Abstract:
A device for encoding video data may be configured to encode video data according to a set of sample adaptive offset (SAO) types; perform a plurality of coding passes to test a subset of the SAO types for a first block of video data, wherein the subset is smaller than the set; select from the subset of SAO types an SAO type for the first block of video data; and generate for inclusion in an encoded bitstream, information for identifying the selected SAO type for the first block.
Abstract:
Prediction information for a current block in an enhancement layer may be determined based at least in part on base layer information obtained by coding a base block in a base layer beneath the enhancement layer. This base block may occur in a position in the base layer such that it is co-located with a non-causal block in the enhancement layer (e.g., a block that occurs after the current block in the coding order of the enhancement layer). The prediction information determined for the current block may be used to code the current block (e.g., encoding or decoding the current block).
Abstract:
In some embodiments of a video coder, if some prediction information is not available for a first block in a current layer, the video coder uses corresponding information (e.g., intra prediction direction and motion information), if available, from the first block's co-located second block in the base layer as if it were the prediction information for the first block. The corresponding information can then be used in the current layer to determine the prediction information of succeeding blocks in the current layer.
Abstract:
An apparatus for coding video data using a single-loop decoding approach may include a memory unit and a processor in communication with the memory unit. In an example, the memory unit stores the video data, the video data including a base layer and an enhancement layer. The base layer includes a base layer block, a non-constrained INTRA mode block, and an INTER mode block. The base layer block includes a sub-block located at least partially within one of the non-constrained INTRA mode block or the INTER mode block. The enhancement layer includes an enhancement layer block located at a position in the enhancement layer corresponding to a position of the base layer block in the base layer. The processor approximates pixel values of the sub-block and determines, based at least in part on the approximated pixel values, pixel values of the enhancement layer block.
Abstract:
In one embodiment, a video coder for coding video data includes a processor and a memory. The processor selects a filter set from a multiple filter sets for upsampling reference layer video data based at least on a prediction operation mode for enhanced layer video data and upsamples the reference layer video data using the selected filter set. Some of the multiple filter sets have some different filter characteristics from one another, and the upsampled reference layer video data has the same spatial resolution as the enhanced layer video data. The processor further codes the enhanced layer video data based at least on the upsampled reference layer video data and the prediction operation mode. The memory stores the upsampled reference layer video data.
Abstract:
An apparatus for coding video information includes a memory unit configured to store video information associated with a reference block; and a processor in communication with the memory unit, wherein the processor is configured to determine a value of a current video unit associated with the reference block based on, at least in part, a classification of the reference block and a scan order selected by the processor based upon the classification. The scan order indicates an order in which values within the reference block are processed to at least partially determine the value of the current video unit.
Abstract:
The disclosure provides a system and methods for encoding video data. The method can include storing a data structure in a memory, the data structure having a first plurality of data elements arranged corresponding to a second plurality of data elements of a first video data block, and defining a periphery, the data structure further including data related to all of a smallest prediction unit (PU) for the first video data block. The method can also include increasing a size of the data structure in the memory by adding a plurality of extended units along the periphery of the first plurality of data elements, each extended unit having data related to a smallest data element of the first video data block, the extended units being set to default values. The method can also comprise encoding the first video data block based on the data structure.
Abstract:
A video encoding device comprises a memory configured to store video data and at least one processor configured to: select one of a full rate-distortion (RD) checking scheme or a fast RD checking scheme, determine an RD cost associated with encoding a block of the video data based on the selected full RD checking scheme or fast RD checking scheme, determine a partitioning scheme for the block based on the determined RD cost, and encode the block using the determined partitioning scheme based on the determined RD cost.
Abstract:
Systems, methods, and devices for coding video data are described herein. In some aspects, a memory is configured to store the video data associated with a base layer and an enhancement layer. The base layer may comprise a reference block and base layer motion information associated with the reference block. The enhancement layer may comprise a current block. A processor operationally coupled to the memory is configured to determine a position of the base layer motion information in a candidate list based on a prediction mode in a plurality of prediction modes used at the enhancement layer. The processor is further configured to perform a prediction of the current block based at least in part on the candidate list.