Abstract:
Aspects generally relate to reducing delay, or phase jitter, in high speed signals transmission. Variations in power supply to ground potential changes the amount of delay introduced by transmit circuitry into the signal being transmitted, resulting in jitter, or phase noise, in the transmitted signal. To reduce phase jitter, or phase noise, aspects disclosed include a variable impedance circuit coupled to the signal distribution network, the impedance level of the variable impedance circuit is adjusted in response to variation in the supply to ground potential, such that the delay introduced by the impedance compensates for changes in the delay due to variations in supply to ground potential, resulting in substantially constant delay.
Abstract:
A low-pass filter circuit is described. The low-pass filter circuit includes a pseudo-resistor. The pseudo-resistor includes at least one metal-oxide-semiconductor field-effect transistor. The at least one metal-oxide-semiconductor field-effect transistor receives a digital power supply domain signal. The low-pass filter circuit also includes a capacitor. The capacitor is coupled to the pseudo-resistor. The capacitor provides a filtered signal. The low-pass filter circuit may pass digital signal transitions and provide low-pass filtering when there is no signal transition.
Abstract:
One feature pertains to a digitally controlled oscillator (DCO) that comprises a variable capacitor and noise reduction circuitry. The variable capacitor has a variable capacitance value that controls an output frequency of the DCO. The variable capacitance value is based on a first bank capacitance value provided by a first capacitor bank, a second bank capacitance value provided by a second capacitor bank, and an auxiliary bank capacitance value provided by an auxiliary capacitor bank. The noise reduction circuitry is adapted to adjust the variable capacitance value by adjusting the auxiliary bank capacitance value while maintaining at least one of the first bank capacitance value and/or the second bank capacitance value substantially unchanged. Prior to adjusting the variable capacitance value, the noise reduction circuitry may determine that a received input DCO control word transitions across a capacitor bank sensitive boundary.
Abstract:
A time-to-digital converter converts the difference between transition times of a reference clock signal and an oscillating signal to a digital signal whose value is proportional to the transitions timing difference. The time-to-digital converter includes an edge detector, a time-to-voltage converter, and an analog-to-digital converter. The edge detector is adapted to detect, during each period of the reference clock signal, the edge (transition) of the oscillating signal that is closest to the edge of the reference clock signal. The time-to-voltage converter is adapted to generate an analog signal proportional to a difference in time between the detected edge of the oscillating signal and the edge of the reference clock signal. The analog-to-digital converter is adapted to convert the analog signal to a digital signal whose value is proportional the difference between the occurrence of the detected edge of the oscillating signal and the edge of the reference clock signal.
Abstract:
A time-to-digital converter converts the difference between transition times of a reference clock signal and an oscillating signal to a digital signal whose value is proportional to the transitions timing difference. The time-to-digital converter includes an edge detector, a time-to-voltage converter, and an analog-to-digital converter. The edge detector is adapted to detect, during each period of the reference clock signal, the edge (transition) of the oscillating signal that is closest to the edge of the reference clock signal. The time-to-voltage converter is adapted to generate an analog signal proportional to a difference in time between the detected edge of the oscillating signal and the edge of the reference clock signal. The analog-to-digital converter is adapted to convert the analog signal to a digital signal whose value is proportional the difference between the occurrence of the detected edge of the oscillating signal and the edge of the reference clock signal.
Abstract:
One feature pertains to a digitally controlled oscillator (DCO) that comprises a variable capacitor and noise reduction circuitry. The variable capacitor has a variable capacitance value that controls an output frequency of the DCO. The variable capacitance value is based on a first bank capacitance value provided by a first capacitor bank, a second bank capacitance value provided by a second capacitor bank, and an auxiliary bank capacitance value provided by an auxiliary capacitor bank. The noise reduction circuitry is adapted to adjust the variable capacitance value by adjusting the auxiliary bank capacitance value while maintaining at least one of the first bank capacitance value and/or the second bank capacitance value substantially unchanged. Prior to adjusting the variable capacitance value, the noise reduction circuitry may determine that a received input DCO control word transitions across a capacitor bank sensitive boundary.