Abstract:
An apparatus configured to code video information includes a memory unit and a processor in communication with the memory unit. The memory unit is configured to store video information associated with a base layer and an enhancement layer. The video information comprises at least one enhancement layer (EL) block and at least one co-located base layer (BL) block. The co-located BL block has motion information associated therewith. The processor is configured to, in response to determining that the size of the EL block is smaller than a threshold size, either (1) use less than all of the motion information associated with the co-located BL block to code the EL block, or (2) refrain from using any motion information associated with the co-located BL block to code the EL block. The processor may encode or decode the video information.
Abstract:
An apparatus for coding video data according to certain aspects includes a memory and a processor in communication with the memory. The memory stores video block information. The video block information includes reference layer block information. The processor determines, based on a parameter of the video block information, a transform function that may be used to code the video block information. The processor may encode or decode the video block information. The transform function may be an alternative transform when the parameter is a predetermined value and a primary transform when the parameter is not the predetermined value. The alternative transform includes one of: a discrete-sine-transform (DST), a Type-I DST, a Type-III DST, a Type-IV DST, a Type-VII DST, a discrete-cosine-transform (DCT), a DCT of different types, and a Karhunen-Loeve transform (KLT).
Abstract:
An apparatus configured to code (e.g., encode or decode) video information includes a memory unit and a processor in communication with the memory unit. The memory unit is configured to store video information associated with a base layer and an enhancement layer. The processor is configured to up-sample a base layer reference block by using an up-sampling filter when the base and enhancement layers have different resolutions; perform motion compensation interpolation by filtering the up-sampled base layer reference block; determine base layer residual information based on the filtered up-sampled base layer reference block; determine weighted base layer residual information by applying a weighting factor to the base layer residual information; and determine an enhancement layer block based on the weighted base layer residual information. The processor may encode or decode the video information.
Abstract:
An apparatus for coding video information according to certain aspects includes a memory unit and a processor in communication with the memory unit. The memory unit stores video information of a reference layer. The processor determines a value of a video unit based at least in part on a prediction value and an adjusted residual prediction value associated with the reference layer. The adjusted residual prediction value is equal to a residual prediction from the reference layer multiplied by a weighting factor that is different from 1.
Abstract:
In one implementation, an apparatus is provided for encoding or decoding video information. The apparatus comprises a memory unit configured to store video information associated with a base layer and/or an enhancement layer. The apparatus further comprises a processor operationally coupled to the memory unit. In one embodiment, the processor is configured to determine a scaling factor based on spatial dimension values associated with the base and enhancement layers such that the scaling factor is constrained within a predetermined range. The processor is also configured to spatially scale an element associated with the base layer or enhancement layer using the scaling factor and a temporal motion vector scaling process.
Abstract:
An apparatus configured to code (e.g., encode or decode) video information includes a memory unit and a processor in communication with the memory unit. The memory unit is configured to store video information associated with a base layer and an enhancement layer, the enhancement layer comprising an enhancement layer (EL) block and the base layer comprising a base layer (BL) block that is co-located with the enhancement layer block. The processor is configured to determine predicted pixel information of the EL block by applying a prediction function to pixel information of the BL block, and to determine the EL block using the predicted pixel information. The processor may encode or decode the video information.
Abstract:
Systems, methods, and devices for video coding that may obtain a rectangular chroma block having first and second square sub-blocks are disclosed. These systems, methods, and devices may also decode a first coded block flag (CBF) for the first square sub-block to indicate whether the first square sub-block includes at least one nonzero transform coefficient. These systems, methods, and devices may also decode a second CBF for the second square sub-block to indicate whether the second square sub-block includes at least one nonzero transform coefficient and not decoding a CBF for the rectangular chroma block.
Abstract:
An apparatus for coding video information according to certain aspects includes a memory unit and a processor in communication with the memory unit. The memory unit stores video information associated with a reference layer and a corresponding enhancement layer. The processor obtains residue block information based at least in part on video information associated with the reference layer and the enhancement layer. The processor determines an adjustment transform function based on a transform function associated with the video information. The processor determines a transform block based on the adjusted transform function and the residue block information.
Abstract:
An apparatus for coding video data using a single-loop decoding approach may include a memory unit and a processor in communication with the memory unit. In an embodiment, the memory unit stores the video data, the video data including a base layer and an enhancement layer. The base layer includes a base layer block, a non-constrained INTRA mode block, and an INTER mode block. The base layer block includes a sub-block located at least partially within one of the non-constrained INTRA mode block or the INTER mode block. The enhancement layer includes an enhancement layer block located at a position in the enhancement layer corresponding to a position of the base layer block in the base layer. The processor approximates pixel values of the sub-block and determines, based at least in part on the approximated pixel values, pixel values of the enhancement layer block.
Abstract:
An apparatus configured to code video information comprises a memory unit and a processor in communication with the memory unit. The memory unit is configured to store video information associated with a reference layer (RL) and an enhancement layer (EL). The EL comprises an EL video unit and the RL comprises an RL video unit corresponding to the EL video unit. The processor is configured to perform upsampling and bit-depth conversion on pixel information of the RL video unit in a single combined process to determine predicted pixel information of the EL video unit, and determine the EL video unit using the predicted pixel information.