Abstract:
The disclosure relates in some aspects to sharing wireless communication resources. For example, a first type of device allocated to use a first resource pool may dynamically use a second resource pool allocated for a second type of device. The first type of device may use an entry criteria to determine whether to use the second resource pool. In some aspects, the entry criteria may specify that resource sharing is permitted if a ratio of resources used by devices of the second type (relative to the total resources in the second resource pool) is less than a threshold. In addition, the first type of device may use an exit criteria to determine whether to stop using the second resource pool. In some aspects, the exit criteria may specify that resource sharing should stop if a ratio of resources used by devices of the second type is greater than a threshold.
Abstract:
Methods and apparatus for storing, manipulating, retrieving, and forwarding state, e.g., context and other information, used to support communications sessions with one or more end nodes, e.g., mobile devices, are described. Various features are directed to a mobile node controlling the transfer of state from a first access node to a second access node during a handoff operation thereby eliminating any need for state transfer messages to be transmitted between the second access node and the first access node during handoff. Other features of the invention are directed to the use of a core network node to store state information. State information stored in the core node can be accessed and used by access nodes in cases where a mobile node does not send a state transfer message during a handoff, e.g., because communication with the first access node is lost or because such messages are not supported.
Abstract:
Methods, systems, and devices for wireless communication are described. A user equipment (UE), e.g., a vehicle in a group of platooning vehicles configured for wireless communications, may identify a travel direction of the group of platooning vehicles. The UE may identify a set of time-frequency radio resources allocated to the travel direction. The UE may perform inter-vehicle communications with one or more neighboring vehicles of the group of platooning vehicles using the set of time-frequency radio resources.
Abstract:
Certain aspects of the present disclosure relate to methods and apparatus for wireless communication, and more specifically to advertising discovery information, relaying discovery information, and to the secure relay of discovery information in wireless networks. Various frame structures are provided for such transmitting and relaying of discovery information. According to certain aspects of the present disclosure, security is provided for relaying discovery information. According to certain aspects of the present disclosure, compensation may be provided to a device that relays discovery information (e.g., when the relaying results in a transaction).
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus receives information from a serving base station and at least one neighboring base station. The information indicates a time allocation of discovery resources allocated by each of the serving base station and the at least one neighboring base station for performing direct discovery. The apparatus further determines a subframe timing of the serving base station and the at least one neighboring base station, and performs direct discovery using the time allocation of the discovery resources allocated by each of the serving base station and the at least one neighboring base station based on a determined subframe timing of the serving base station or a neighboring base station corresponding to the discovery resources.
Abstract:
The disclosure generally relates to synchronizing application account data using out-of-band device-to-device (D2D) communication between peer wireless devices. More particularly, a first device may generate a local unique expression that includes a name, one or more user credentials, and a last update time associated with an application registered for a D2D-based application synchronization service. In response to detecting one or more external unique expressions from one or more peer devices in proximity that match the name and the user credentials associated with the registered application, the first device may then identify, among the one or more peer devices, an update device associated with an external unique expression having a last update time more recent than the last update time associated with the local unique expression and request an update to synchronize the application account data associated with the registered application from the update device over an out-of-band D2D connection.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus may be a target UE, an initiator UE, or an MME. In one configuration, the apparatus is an initiator UE. The initiator UE determines a network address of a target UE based on a target expression, sends a connection request including information associated with the initiator UE to the target UE at the determined network address, sends information associated with the target UE to an MME serving the initiator UE, and receives, from the MME serving the initiator UE, one or more parameters for communicating with the target UE. Further, the initiator UE communicates with the target UE based on the one or more parameters.
Abstract:
Methods, systems, and devices are described for access class barring (ACB) operations for device-to-device (D2D proximity service communications. An ACB parameter may be defined and assigned to UEs that is associated with discovery or communication operations for normal and high priority user equipments (UEs). The UE may identify a resource for D2D proximity service communications and, when not barred, send a radio resource control (RRC) connection message requesting the available resource. An establishment cause may be defined and included in the RRC connection request message that corresponds to the ACB parameter.
Abstract:
A user device may receive one or more parameters from a base station to facilitate device-to-device (D2D) discovery. One of the received parameters is a discovery period parameter, which identifies a discovery period in which discovery resources are available for D2D discovery. Once the user device has received the parameters, the user device may use the parameters to participate in D2D discovery.
Abstract:
Methods and apparatus for storing, manipulating, retrieving, and forwarding state, e.g., context and other information, used to support communications sessions with one or more end nodes, e.g., mobile devices, are described. Various features are directed to a mobile node controlling the transfer of state from a first access node to a second access node during a handoff operation thereby eliminating any need for state transfer messages to be transmitted between the second access node and the first access node during handoff. Other features of the invention are directed to the use of a core network node to store state information. State information stored in the core node can be accessed and used by access nodes in cases where a mobile node does not send a state transfer message during a handoff, e.g., because communication with the first access node is lost or because such messages are not supported.