Abstract:
The amount of far-field noise transmitted by a primary communication device in an open-plan office environment is reduced by defining an acoustic perimeter of reference microphones around the primary device. Reference microphones generate a reference audio input including far-field noise in the proximity of the primary device. The primary device generates a main audio input including the voice of the primary speaker as well as background noise. Reference audio input is compared to main audio input to identify the background noise portion of the main audio signal. A noise reduction algorithm suppresses the identified background noise in the main audio signal. The one or more reference microphones defining the acoustic perimeter may be included in separate microphone devices placed in proximity to the main desktop phone, microphones within other nearby desktop telephone devices, or a combination of both types of devices.
Abstract:
Noise suppression systems and methods suppress far field noise in a microphone signal. A telephony system includes a main microphone and a reference microphone. In one example, the main microphone and the reference microphone can be located in the same device. In another example, the main microphone and the reference microphone can be located in two separate devices. A DSP can use the reference microphone signal to carry out suppression of far field noise in the main microphone signal. In one approach the DSP can determine an estimate of far field noise in the main microphone signal based on a noise estimate of the reference microphone signal and a reference and main microphone coupling estimate, and then subtract the far field noise estimate from the main microphone signal. Alternatively, the DSP can suppress the main microphone signal if it determines that a local talker is inactive.
Abstract:
Noise suppression systems and methods suppress far field noise in a microphone signal. A telephony system includes a main microphone and a reference microphone. In one example, the main microphone and the reference microphone can be located in the same device. In another example, the main microphone and the reference microphone can be located in two separate devices. A DSP can use the reference microphone signal to carry out suppression of far field noise in the main microphone signal. In one approach the DSP can determine an estimate of far field noise in the main microphone signal based on a noise estimate of the reference microphone signal and a reference and main microphone coupling estimate, and then subtract the far field noise estimate from the main microphone signal. Alternatively, the DSP can suppress the main microphone signal if it determines that a local talker is inactive.
Abstract:
The amount of far-field noise transmitted by a primary communication device in an open-plan office environment is reduced by defining an acoustic perimeter of reference microphones around the primary device. Reference microphones generate a reference audio input including far-field noise in the proximity of the primary device. The primary device generates a main audio input including the voice of the primary speaker as well as background noise. Reference audio input is compared to main audio input to identify the background noise portion of the main audio signal. A noise reduction algorithm suppresses the identified background noise in the main audio signal. The one or more reference microphones defining the acoustic perimeter may be included in separate microphone devices placed in proximity to the main desktop phone, microphones within other nearby desktop telephone devices, or a combination of both types of devices.
Abstract:
A videoconferencing system has a plurality of displays arranged side-by-side. Top loudspeakers are arranged adjacent the tops of the displays, and bottom loudspeakers are arranged adjacent the bottoms of the displays. A control unit operatively coupled to the displays and the loudspeakers routes video to each of the displays and routes audio corresponding to each display to any of the top and bottom loudspeakers arranged adjacent the display. Thus, the top and bottom loudspeakers form a vertical pair of loudspeakers that output the corresponding audio for its respective display. In this way, the audio for the video of a given display is perceived by participants to originate from the center of the given display. If one of the loudspeakers is not provided, gain setting and mixing between adjacent sets of loudspeakers can produce a virtual loudspeaker for the one that is missing.
Abstract:
The amount of far-field noise transmitted by a primary communication device in an open-plan office environment is reduced by defining an acoustic perimeter of reference microphones around the primary device. Reference microphones generate a reference audio input including far-field noise in the proximity of the primary device. The primary device generates a main audio input including the voice of the primary speaker as well as background noise. Reference audio input is compared to main audio input to identify the background noise portion of the main audio signal. A noise reduction algorithm suppresses the identified background noise in the main audio signal. The one or more reference microphones defining the acoustic perimeter may be included in separate microphone devices placed in proximity to the main desktop phone, microphones within other nearby desktop telephone devices, or a combination of both types of devices.
Abstract:
The amount of far-field noise transmitted by a primary communication device in an open-plan office environment is reduced by defining an acoustic perimeter of reference microphones around the primary device. Reference microphones generate a reference audio input including far-field noise in the proximity of the primary device. The primary device generates a main audio input including the voice of the primary speaker as well as background noise. Reference audio input is compared to main audio input to identify the background noise portion of the main audio signal. A noise reduction algorithm suppresses the identified background noise in the main audio signal. The one or more reference microphones defining the acoustic perimeter may be included in separate microphone devices placed in proximity to the main desktop phone, microphones within other nearby desktop telephone devices, or a combination of both types of devices.
Abstract:
The amount of far-field noise transmitted by a primary communication device in an open-plan office environment is reduced by defining an acoustic perimeter of reference microphones around the primary device. Reference microphones generate a reference audio input including far-field noise in the proximity of the primary device. The primary device generates a main audio input including the voice of the primary speaker as well as background noise. Reference audio input is compared to main audio input to identify the background noise portion of the main audio signal. A noise reduction algorithm suppresses the identified background noise in the main audio signal. The one or more reference microphones defining the acoustic perimeter may be included in separate microphone devices placed in proximity to the main desktop phone, microphones within other nearby desktop telephone devices, or a combination of both types of devices.
Abstract:
The amount of far-field noise transmitted by a primary communication device in an open-plan office environment is reduced by defining an acoustic perimeter of reference microphones around the primary device. Reference microphones generate a reference audio input including far-field noise in the proximity of the primary device. The primary device generates a main audio input including the voice of the primary speaker as well as background noise. Reference audio input is compared to main audio input to identify the background noise portion of the main audio signal. A noise reduction algorithm suppresses the identified background noise in the main audio signal. The one or more reference microphones defining the acoustic perimeter may be included in separate microphone devices placed in proximity to the main desktop phone, microphones within other nearby desktop telephone devices, or a combination of both types of devices.
Abstract:
The amount of far-field noise transmitted by a primary communication device in an open-plan office environment is reduced by defining an acoustic perimeter of reference microphones around the primary device. Reference microphones generate a reference audio input including far-field noise in the proximity of the primary device. The primary device generates a main audio input including the voice of the primary speaker as well as background noise. Reference audio input is compared to main audio input to identify the background noise portion of the main audio signal. A noise reduction algorithm suppresses the identified background noise in the main audio signal. The one or more reference microphones defining the acoustic perimeter may be included in separate microphone devices placed in proximity to the main desktop phone, microphones within other nearby desktop telephone devices, or a combination of both types of devices.