Abstract:
A gap compensation mechanism capable of self adaptive posture adjustment is disclosed, which comprises a base seat, having at least a fixation portion disposed thereon, the fixation portion having a flow path area disposed peripheral thereto; at least an adjustment unit, sleeved onto an outer rim of the fixation portion; and a filler, being filled within the flow path area. As such, a workpiece to be fixed may be disposed on a face of an adjustment unit. Further, the adjustment unit provides at least three freedoms for the altitude and two axial inclinations for self adaptively compensating a gap with any geometrical shapes and thus further adjusting the posture of the combined workpiece. After all the adjustments, a filler is filled to reinforce the structure and finally a fixation unit is employed for locking and fixing.
Abstract:
A projector having a first end and a second end opposite to the first end includes an image source, a mirror and a first lens set. The image source is disposed at the first end, and projects lights of an image along a first direction. The mirror is disposed at the second end along the first direction. The first lens set is disposed between the image source and the mirror, and forms for the lights a common aperture located between the first lens set and the mirror.
Abstract:
A gap compensation mechanism capable of self adaptive posture adjustment is disclosed, which comprises a base seat, having at least a fixation portion disposed thereon, the fixation portion having a flow path area disposed peripheral thereto; at least an adjustment unit, sleeved onto an outer rim of the fixation portion; and a filler, being filled within the flow path area. As such, a workpiece to be fixed may be disposed on a face of an adjustment unit. Further, the adjustment unit provides at least three freedoms for the altitude and two axial inclinations for self adaptively compensating a gap with any geometrical shapes and thus further adjusting the posture of the combined workpiece. After all the adjustments, a filler is filled to reinforce the structure and finally a fixation unit is employed for locking and fixing.
Abstract:
A common optical components exposer lens set having a single non-spherical surface, comprising a common optical element set, comprising a first, second, and third lens arranged sequentially; a spherical reflecting mirror, arranged below the third spherical lens; and a planar reflecting lens, comprising a first and second planar reflecting, inclinedly arranged above the first lens, so that an equi-multiplication exposer lens set is formed by the spherical mirror set, so as to impinge a pattern on an object onto a photosensitive surface. As such, a single non-spherical surface and overlapping assembly, composed of three lenses having the single non-spherical surface and a spherical reflecting lens and two planar reflecting lenses overlapping together, in which two optical material types are arranged with respect to each other.
Abstract:
A conjugate common light path lithography lens set includes a first, second, third, and fourth spherical mirrors, arranged sequentially, a spherical reflecting mirror arranged below the fourth spherical mirror, a first and second planar reflecting mirrors, inclinedly arranged above the first spherical mirror, so that a conjugate telecentric component pattern is formed to maintain an pattern of an object to have a non-deformed pattern after experiencing these optical components. As such, the omni-spherical mirror set and two kinds of optical material are mutually arranged to form the novel conjugate common light path lithography lens set. This may further achieve the function of the lithography lens, and have a direct effect on the manufacturing cost. And, the efficacies of reduced component number, easier manufacture of the optical components (satisfied with the lens manufacturing's experience equation), easier calibration, reduced chromatic abberation, optimized aperature F/#, and a reduced cost may be achieved.
Abstract:
A conjugate common light path lithography lens set includes a first, second, third, and fourth spherical mirrors, arranged sequentially, a spherical reflecting mirror arranged below the fourth spheircal mirror, a first and second planar reflecting mirrors, inclinedly arranged above the first spherical mirror, so that a conjugate telecentric component pattern is formed to maintain an pattern of an object to have a non-deformed pattern after experiencing these optical components. As such, the omni-spherical mirror set and two kinds of optical material are mutually arranged to form the novel conjugate common light path lithography lens set. This may further achieve the function of the lithography lens, and have a direct effect on the manufacturing cost. And, the efficacies of reduced component number, easier manufacture of the optical components (satisfied with the lens manufacturing's experience equation), easier calibration, reduced chromatic abberation, optimized aperature F/#, and a reduced cost may be achieved.
Abstract:
A common optical components exposer lens set having a single non-spherical surface, comprising a common optical element set, comprising a first, second, and third lens arranged sequentially; a spherical reflecting mirror, arranged below the third spherical lens; and a planar reflecting lens, comprising a first and second planar reflecting, inclinedly arranged above the first lens, so that an equi-multiplication exposer lens set is formed by the spherical mirror set, so as to impinge a pattern on an object onto a photosensitive surface. As such, a single non-spherical surface and overlapping assembly, composed of three lenses having the single non-spherical surface and a spherical reflecting lens and two planar reflecting lenses overlapping together, in which two optical material types are arranged with respect to each other.