Abstract:
In a manufacturing method for a thermistor element (3) including: a thermistor portion (49) which is a sintered body formed from a thermistor material; and a pair of electrode wires (25) which are embedded in the thermistor portion (49) and at least one end portion of each of the electrode wires projects at an outer side of the thermistor portion (49), the resistance value of the thermistor element (3) is adjusted by performing a removal processing of removing a part of the thermistor portion (49).
Abstract:
There is provided a wavelength conversion member including: a fluorescent body and a reflective film. The fluorescent body is configured to emit fluorescence by an excitation light and has an incident surface into which the excitation light comes and a rear surface which faces the incident surface. The reflective film is arranged on a side of the rear surface of the fluorescent body and includes a metal layer and ceramic particles dispersed in the metal layer. The ceramic particles are crystalline, and a melting point of the ceramic particles is higher than a melting point of a metal constructing the metal layer.
Abstract:
A fluorescent plate including a fluorescent phase which emits fluorescence by excitation light, and a plurality of voids, wherein, in a cross section of the fluorescent plate including cross sections of the voids, voids having an equivalent circle diameter of 0.4 micrometers or greater and 50 micrometers or smaller have a standard deviation in equivalent circle diameter of 1.5 or less.
Abstract:
A sintered electroconductive oxide having a perovskite oxide type crystal structure represented by a compositional formula: M1aM2bMncAldCreOf wherein M1 represents at least one element selected from group 3 elements; and M2 represents at least one element selected from among Mg, Ca, Sr and Ba, wherein element M1 predominantly includes at least one element selected from Nd, Pr and Sm, and a, b, c, d, e and f satisfy the following relationships: 0.6005≦a
Abstract:
A fluorescent plate includes a fluorescent phase which emits fluorescence by excitation light, a light-transmitting phase which allows passage of the excitation light, and a plurality of voids surrounded by the fluorescent phase and the light-transmitting phase, wherein, in a cross section of the fluorescent plate including cross sections of the voids, an average ratio of a portion of the circumference of a void, which portion is in contact with the fluorescent phase to the entire circumference of the void, is higher than an area ratio of the area of the fluorescent phase present in the fluorescent plate to the total area of the fluorescent phase and the light-transmitting phase present in the fluorescent plate.
Abstract:
A fluorescent plate includes a fluorescent phase which emits fluorescence by excitation light, and a plurality of voids. The plurality of voids include a plurality of particular voids having an equivalent circle diameter of 0.4 micrometers or greater and 50 micrometers or smaller. In a cross section of the fluorescent plate, the ratio of the number of the particular voids having a circularity greater than 0.6 and 1 or less to the total number of the plurality of particular voids is 50% or greater.
Abstract:
An optical wavelength conversion member according to one aspect of the present disclosure includes a ceramic sintered body, wherein the ceramic sintered body has a fluorescent phase containing, as a main. component, fluorescent crystal grains that generate fluorescence in response to incident light, and a translucent phase containing translucent crystal grains as a main component. The optical wavelength conversion member includes a metal layer having light reflectivity and provided on a side of the ceramic sintered body opposite the side on which the light is incident, and a dielectric multilayer film including dielectric layers having different optical refractive indices and provided between the ceramic sintered body and the metal layer.
Abstract:
An optical wavelength converter (1) is configured such that an optical wavelength conversion member (9) is bonded to a heat dissipation member (13) having superior heat dissipation property. Thus, heat generated by light incident on the optical wavelength conversion member (9) can be efficiently dissipated. Therefore, even when high-energy light is incident on the optical wavelength converter, temperature quenching is less likely to occur, and thus high fluorescence intensity can be maintained. An intermediate film (21) is disposed between a reflective film (19) and a bonding portion (15). The presence of the intermediate film (21) improves the adhesion between the reflective film (19) and the bonding portion (15), thereby enhancing the heat dissipation from the optical wavelength conversion member (9) to the heat dissipation member (13). Thus, the temperature quenching of the optical wavelength conversion member (9) can be prevented, thereby enhancing fluorescence intensity.