Abstract:
A load control system may include one or more wireless control devices that may be associated via a programming device. An identifier for a first wireless control device may be determined in response to an actuation of a button on the first wireless control device. An association between the first wireless control device and a second wireless control device may be defined at the programming device. The identifier for the first wireless control device may be transmitted to the second wireless control device, which may cause the first wireless control device to enter a sleep mode. The first wireless control device may enter the sleep mode after an actuation of a button on the first wireless control device. The identifier may be determined in response to the actuation of the button on the first wireless control device and/or prior to the first wireless control device entering the sleep mode.
Abstract:
A remote control device having capacitive touch controls may be configured to enter a sleep state (or mode). For example, the remote control device may be configured to enter the sleep state upon expiration of an interval of time since a most recent button press. The remote control may be configured to awaken from the sleep state when one or more portions of a housing of the remote control are deflected, for example, when a user grasps the remote control to actuate one or more of the capacitive touch controls. For example, the remote control device may include a switch. The switch may include a carbon structure that may be configured to contact an open circuit pad on a circuit board to close the corresponding circuit when the housing is deflected and awaken the remote control device from the sleep state.
Abstract:
A load control system may include control devices for controlling electrical loads. The control devices may include load control devices, such as a lighting device for controlling an amount of power provided to a lighting load, and controller devices, such as a remote control device configured to transmit digital messages for controlling the lighting load via the load control device. The remote control device may communicate with the lighting devices via a hub device. The remote control device may detect a user interface event, such as a button press or a rotation of the remote control device. The remote control device or the hub device may determine whether to transmit digital messages as unicast messages or multicast messages based on the type of user interface event detected. The remote control device, or other master device, may synchronize and/or toggle an on/off state of lighting devices in the load control system.
Abstract:
A remote control device having capacitive touch controls may be configured to enter a sleep state (or mode). For example, the remote control device may be configured to enter the sleep state upon expiration of an interval of time since a most recent button press. The remote control may be configured to awaken from the sleep state when one or more portions of a housing of the remote control are deflected, for example, when a user grasps the remote control to actuate one or more of the capacitive touch controls. For example, the remote control device may include a switch. The switch may include a carbon structure that may be configured to contact an open circuit pad on a circuit board to close the corresponding circuit when the housing is deflected and awaken the remote control device from the sleep state.
Abstract:
A remote control device having capacitive touch controls may be configured to enter a sleep state (or mode). For example, the remote control device may be configured to enter the sleep state upon expiration of an interval of time since a most recent button press. The remote control may be configured to awaken from the sleep state when one or more portions of a housing of the remote control are deflected, for example, when a user grasps the remote control to actuate one or more of the capacitive touch controls. For example, the remote control device may include a switch. The switch may include a carbon structure that may be configured to contact an open circuit pad on a circuit board to close the corresponding circuit when the housing is deflected and awaken the remote control device from the sleep state.
Abstract:
A wireless load control system for controlling one or more electrical loads comprises a wireless control device (e.g., a gateway device) able to obtain a present time from a server via a network (e.g., the Internet), control the electrical loads according to a timeclock schedule, and disable the timeclock schedule if the present time is not able to be obtained from the server via the network. The wireless control device may also be able to obtain the present time from a digital message received from an external device (e.g., a smart phone or a tablet device) via the network. The wireless control device may be configured to receive a control signal indicating a power outage (e.g., from a battery backup device), and to operate in a low-power mode in response to receiving the control signal indicating the power outage.
Abstract:
A load control system may include one or more wireless control devices that may be associated via a programming device. An identifier for a first wireless control device may be determined in response to an actuation of a button on the first wireless control device. An association between the first wireless control device and a second wireless control device may be defined at the programming device. The identifier for the first wireless control device may be transmitted to the second wireless control device, which may cause the first wireless control device to enter a sleep mode. The first wireless control device may enter the sleep mode after an actuation of a button on the first wireless control device. The identifier may be determined in response to the actuation of the button on the first wireless control device and/or prior to the first wireless control device entering the sleep mode.
Abstract:
A load control system may include control devices for controlling power provided to an electrical load. The control devices may include an input device and a load control device. The load control system may include a hub device. The hub device may include a communication circuit and a control circuit. The communication circuit may be configured to receive a digital message from the control device. The control circuit may be configured to determine, based on content of the digital message, whether the control device has experienced a power removal event. The hub device may send, via the communication circuit, a power removal event indication to the control device of whether the control device has experienced the power removal event.
Abstract:
A control device has a night light that allows the control device to be easily found when the control device is located in a dark space. The control device comprises a low-power night light circuit having an LED characterized by a normal current range. The night light circuit conducts an LED current through the LED in a first mode to illuminate the LED to a first level to provide a night light, where the LED current has a magnitude below the normal current range, such that the night light may be provided in a battery-powered remote control that has an acceptable battery lifetime. The night light circuit is configured to operate in a second mode to illuminate the LED to a second level greater than the first level to provide feedback. The LED current in the second mode has a magnitude within the normal current range of the LED.
Abstract:
A wireless load control system for controlling one or more electrical loads comprises a wireless control device (e.g., a gateway device) able to obtain a present time from a server via a network (e.g., the Internet), control the electrical loads according to a timeclock schedule, and disable the timeclock schedule if the present time is not able to be obtained from the server via the network. The wireless control device may also be able to obtain the present time from a digital message received from an external device (e.g., a smart phone or a tablet device) via the network. The wireless control device may be configured to receive a control signal indicating a power outage (e.g., from a battery backup device), and to operate in a low-power mode in response to receiving the control signal indicating the power outage.