Abstract:
A method for coating a thin film in a rolling manner and a thin film coating apparatus are provided. The method includes: floating a thin film material on a liquefied material; rolling a cylindrical substrate after contacting the cylindrical substrate with the thin film material; and coating the thin film material on a surface of the cylindrical substrate by using an attraction force between the surface of the cylindrical substrate and the thin film material.
Abstract:
An apparatus for measuring micro-cracks in a membrane electrode assembly includes a resistance measurement unit to measure variation in electrical resistance of the membrane electrode assembly while tensioning the membrane electrode assembly in a state in which power is applied to an upper catalyst layer while a lower catalyst layer is insulated, an image capture unit to capture an image of micro-cracks in the upper catalyst layer while the membrane electrode assembly is being tensioned, and a controller to detect, in real time, variation in electrical resistance measured by the resistance measurement unit, corresponding to the image of micro-cracks captured by the image capture unit, and to interpret the size of the micro-cracks generated in the membrane electrode assembly based on the detected variation in electrical resistance.
Abstract:
A method for coating a thin film in a rolling manner and a thin film coating apparatus are provided. The method includes: floating a thin film material on a liquefied material; rolling a cylindrical substrate after contacting the cylindrical substrate with the thin film material; and coating the thin film material on a surface of the cylindrical substrate by using an attraction force between the surface of the cylindrical substrate and the thin film material.
Abstract:
Disclosed are a process for separating an electrode for membrane-electrode assemblies of fuel cells from the decal transfer film and an apparatus for separating the electrode. In particular, during the electrode separating process, only an electrode is separated from the decal transfer film on which the electrode is coated, without any damage, by a freezing method for freezing the specimen on the deionized water surface, and thus, wasting the expensive MEA is prevented. Thus, mechanical properties of the pristine electrode can be rapidly quantified in advance, and therefore, long term durability evaluation period during developing MEA having excellent durability is substantially reduced.
Abstract:
The present invention relates to a soft robot using diamagnetic levitation. Such a soft robot using diamagnetic levitation is formed of a diamagnetic material to levitate on the ground on which a magnetic field is formed, and moves in a direction toward a predetermined point of a head part when the predetermined point of the head part is heated, and may thus move and change its direction in a state in which it is not in contact with the ground.
Abstract:
Disclosed are a process for separating an electrode for membrane-electrode assemblies of fuel cells from the decal transfer film and an apparatus for separating the electrode. In particular, during the electrode separating process, only an electrode is separated from the decal transfer film on which the electrode is coated, without any damage, by a freezing method for freezing the specimen on the deionized water surface, and thus, wasting the expensive MEA is prevented. Thus, mechanical properties of the pristine electrode can be rapidly quantified in advance, and therefore, long term durability evaluation period during developing MEA having excellent durability is substantially reduced.
Abstract:
Disclosed are a process for separating an electrode for membrane-electrode assemblies of fuel cells from the decal transfer film and an apparatus for separating the electrode. In particular, during the electrode separating process, only an electrode is separated from the decal transfer film on which the electrode is coated, without any damage, by a freezing method for freezing the specimen on the deionized water surface, and thus, wasting the expensive MEA is prevented. Thus, mechanical properties of the pristine electrode can be rapidly quantified in advance, and therefore, long term durability evaluation period during developing MEA having excellent durability is substantially reduced.
Abstract:
Disclosed are a process for separating an electrode for membrane-electrode assemblies of fuel cells from the decal transfer film and an apparatus for separating the electrode. In particular, during the electrode separating process, only an electrode is separated from the decal transfer film on which the electrode is coated, without any damage, by a freezing method for freezing the specimen on the deionized water surface, and thus, wasting the expensive MEA is prevented. Thus, mechanical properties of the pristine electrode can be rapidly quantified in advance, and therefore, long term durability evaluation period during developing MEA having excellent durability is substantially reduced.
Abstract:
An apparatus for measuring micro-cracks in a membrane electrode assembly includes a resistance measurement unit to measure variation in electrical resistance of the membrane electrode assembly while tensioning the membrane electrode assembly in a state in which power is applied to an upper catalyst layer while a lower catalyst layer is insulated, an image capture unit to capture an image of micro-cracks in the upper catalyst layer while the membrane electrode assembly is being tensioned, and a controller to detect, in real time, variation in electrical resistance measured by the resistance measurement unit, corresponding to the image of micro-cracks captured by the image capture unit, and to interpret the size of the micro-cracks generated in the membrane electrode assembly based on the detected variation in electrical resistance.