Abstract:
A measurement wafer device for measuring radiation intensity and temperature includes a wafer assembly including one or more cavities. The measurement wafer device further includes a detector assembly. The detector assembly includes one or more light sensors. The detector assembly is further configured to perform a direct or indirect measurement of the intensity of ultraviolet light incident on a surface of the wafer assembly.
Abstract:
An etch rate monitor apparatus has a substrate, an optical element and one or more optical detectors mounted to a common substrate with the one or more detectors sandwiched between the substrate and optical element to detect changes in optical interference signal resulting from changes in optical thickness of the optical element. The optical element is made of a material that allows transmission of light of a wavelength of interest. A reference waveform and data waveform can be collected with the apparatus and cross-correlated to determine a thickness change. This abstract is provided to comply with rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
Abstract:
A sensor apparatus has a substrate and a spectrally selective detection system, and a cover. The spectrally sensitive detection system is sandwiched between the substrate and the cover. The spectrally selective detection system includes a generally laminar array of wavelength selectors optically coupled to a corresponding array of optical detectors located within the substrate. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
Abstract:
A measurement wafer device for measuring radiation intensity and temperature includes a wafer assembly including one or more cavities. The measurement wafer device further includes a detector assembly. The detector assembly is disposed within the one or more cavities of the wafer assembly. The detector assembly includes one or more light sensors. The detector assembly is further configured to perform a direct or indirect measurement of the intensity of ultraviolet light incident on a surface of the wafer assembly. The detector assembly is further configured to determine a temperature of one or more portions of the wafer assembly based on one or more characteristics of the one or more light sensors.
Abstract:
A measurement wafer device for measuring radiation intensity and temperature includes a wafer assembly including one or more cavities. The measurement wafer device further includes a detector assembly. The detector assembly includes one or more light sensors. The detector assembly is further configured to perform a direct or indirect measurement of the intensity of ultraviolet light incident on a surface of the wafer assembly.
Abstract:
A measurement wafer device for measuring radiation intensity and temperature includes a wafer assembly including one or more cavities. The measurement wafer device further includes a detector assembly. The detector assembly is disposed within the one or more cavities of the wafer assembly. The detector assembly includes one or more light sensors. The detector assembly is further configured to perform a direct or indirect measurement of the intensity of ultraviolet light incident on a surface of the wafer assembly. The detector assembly is further configured to determine a temperature of one or more portions of the wafer assembly based on one or more characteristics of the one or more light sensors.
Abstract:
An etch rate monitor apparatus has a substrate, an optical element and one or more optical detectors mounted to a common substrate with the one or more detectors sandwiched between the substrate and optical element to detect changes in optical interference signal resulting from changes in optical thickness of the optical element. The optical element is made of a material that allows transmission of light of a wavelength of interest. A reference waveform and data waveform can be collected with the apparatus and cross-correlated to determine a thickness change. This abstract is provided to comply with rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
Abstract:
Some aspects of the present disclosure relate to a system having a substrate device, a substrate support surface, and a substrate handler that positions the substrate device on the substrate support surface. The substrate device and the substrate support surface may have counterpart coarse position units and fine position units. The system may measure coarse positional offsets between the first and second coarse position units, re-position the substrate device on the substrate support surface based on the coarse positional offsets, and subsequently measure fine positional offsets between the first and second fine position units. In some implementations, the substrate device is integrally coupled to the substrate handler via a wireless communication link in order to communicate position information as feedback for further placement.
Abstract:
A metrology system may include one or more casings that fit within an interior cavity of a sample transport device, an illumination source within one of the one or more casings, one or more illumination optics within one of the one or more casings for directing illumination from the illumination source to a sample located in the interior cavity of the sample transport device, one or more collection optics within one of the one or more casings for light from the sample in response to the illumination from the illumination source, and one or more detectors within one of the one or more casings for generating metrology data based on at least a portion of the light collected by the one or more collection optics.
Abstract:
A metrology system may include one or more casings that fit within an interior cavity of a sample transport device, an illumination source within one of the one or more casings, one or more illumination optics within one of the one or more casings for directing illumination from the illumination source to a sample located in the interior cavity of the sample transport device, one or more collection optics within one of the one or more casings for light from the sample in response to the illumination from the illumination source, and one or more detectors within one of the one or more casings for generating metrology data based on at least a portion of the light collected by the one or more collection optics.