Abstract:
Embodiments of a plasma generator apparatus for ashing a work piece are provided. The apparatus includes a container adapted for continuous gas flow there through from an inlet end to an outlet end thereof. The container is fabricated of a dielectric material and adapted for ionization therein of a portion of at least one component of gas flowing therethrough. A gas flow distributor is configured to direct gas flow to a region within the container and a coil surrounds at least a portion of side walls of the container adjacent the region of the container to which the gas flow distributor directs gas flow. A radio frequency generator is coupled to the coil.
Abstract:
This invention pertains to systems and methods for atomic layer chemical vapor deposition. More specifically, the invention pertains to methods for copper atomic layer chemical vapor deposition, particularly to deposit a seed layer prior to the electrochemical Cu fill operation in integrated circuit fabrication. It also pertains to apparatus modules for performing such deposition.
Abstract:
An apparatus is provided for obtaining very high quality films by chemical vapor deposition in situations where the deposition is mass transport limited. In accordance with the preferred embodiments, there is provided a vacuum housing which is actively cooled to a temperature below which deposition occurs, while at the same time the wafers are being heated to cause deposition at the wafer surfaces. Also provided are mixing chamber systems to ensure that reactant gases are well mixed and distributed evenly over each wafer surface. Mass transport control is further enhanced by providing an exhaust manifold which scavenges reactant gases from locations distributed throughout the system to achieve an even exhaust. Also provided is a method for depositing silicon-rich tungsten silicides using the above apparatus.
Abstract:
Methods for depositing a tungsten nitride layer are described. The methods form a tungsten nitride layer using a carefully controlled deposition technique such as pulsed nucleation layer (PNL). Initially, a tungsten layer is formed on a substrate surface. The tungsten layer is then exposed to a nitriding agent to form a tungsten nitride layer. Methods of forming relatively thick layers of involve repeated cycles of contact with reducing agent, tungsten precursor and nitriding agent. In some cases, the cycle may also include contact with a dopant precursor such as phosphine or arsine.
Abstract:
A CVD method deposits conformal metal layers on small features of a substrate surface. The method includes three principal operations: depositing a thin conformal layer of precursor over some or all of the substrate surface; oxidizing the precursor to convert it to a conformal layer of metal oxide; and reducing some or all of the metal oxide to convert it to a conformal layer of the metal itself. The conformal layer of precursor may form a “monolayer” on the substrate surface. Examples of metals for deposition include copper, cobalt, ruthenium, indium, and rhodium.
Abstract:
The nucleation delay in the formation of a tungsten layer on a substrate is reduced or eliminated by alternative processes. In one process the substrate is exposed to atomic hydrogen before the tungsten nucleation layer is formed. In the other process the substrate is exposed to a boron hydride such as diborane (B2H6) before the nucleation layer is formed. The process works effectively to reduce or eliminate the tungsten nucleation delay on a variety of surfaces, including silicon, silicon dioxide, silicon nitride and titanium nitride.
Abstract translation:通过替代方法减少或消除了在基底上形成钨层的成核延迟。 在一个过程中,在形成钨成核层之前,将衬底暴露于原子氢。 在另一方法中,在形成成核层之前,将基底暴露于硼氢化物如乙硼烷(B 2 H 6 H 6)。 该工艺有效地减少或消除了各种表面上的钨成核延迟,包括硅,二氧化硅,氮化硅和氮化钛。
Abstract:
A showerhead disperser device for mixing plural vapor streams, comprising: a housing including front and rear walls in spaced apart relation to one another, and a side wall therebetween, defining within the housing an interior volume; the front wall having a multiplicity of vapor mixture discharge openings therein, for discharging mixed vapor from the interior volume of the housing exteriorly thereof, flow passages joined to the housing for introducing into the interior volume of the housing respective fluids to be mixed therein; and at least one baffle plate mounted in the interior volume of the housing, intermediate the front and rear walls of the housing, the baffle plate having an edge in spaced relation to the side wall to form an annular flow passage therebetween and the baffle plate having at least one of the respective fluids directed thereagainst upon introduction to the interior volume of the housing, for distribution thereof in the interior volume of the housing. The baffled showerhead disperser is usefully employed to enable formation of CVD thin films of highly uniform composition and thickness.
Abstract:
Embodiments of a plasma generator apparatus for ashing a work piece are provided. The apparatus includes a container adapted for continuous gas flow there through from an inlet end to an outlet end thereof. The container is fabricated of a dielectric material and adapted for ionization therein of a portion of at least one component of gas flowing therethrough. A gas flow distributor is configured to direct gas flow to a region within the container and a coil surrounds at least a portion of side walls of the container adjacent the region of the container to which the gas flow distributor directs gas flow. A radio frequency generator is coupled to the coil.
Abstract:
Methods of using a plasma generator to ash a work piece is provided. In an exemplary embodiment, the method includes flowing gas that has a gaseous component able to form plasma under conditions of radio-frequency energy excitation into the container. A proportion of the gas is directed to a first region of the container to form a higher gas density in the first region of the container and a corresponding lower gas density in a second region of the container. Sufficient energy is applied to the gas in at least the first region to excite a proportion of the gaseous component able to form plasma.
Abstract:
A showerhead disperser device for mixing plural vapor streams, comprising: a housing including front and rear walls in spaced apart relation to one another, and a side wall therebetween, defining within the housing an interior volume; the front wall having a multiplicity of vapor mixture discharge openings therein, for discharging mixed vapor from the interior volume of the housing exteriorly thereof, flow passages joined to the housing for introducing into the interior volume of the housing respective fluids to be mixed therein; and at least one baffle plate mounted in the interior volume of the housing, intermediate the front and rear walls of the housing, the baffle plate having an edge in spaced relation to the side wall to form an annular flow passage therebetween and the baffle plate having at least one of the respective fluids directed thereagainst upon introduction to the interior volume of the housing, for distribution thereof in the interior volume of the housing. The baffled showerhead disperser is usefully employed to enable formation of CVD thin films of highly uniform composition and thickness.