Abstract:
A method and system for determining amplitude and phase compensation values used to adjust the amplitude and phase characteristics of real and imaginary signal components of complex signals processed by an analog radio transmitter. The compensation values may be determined in response to detecting a significant temperature change in the transmitter. Corresponding amplitude and phase adjustment signals having levels that correspond to the compensation values are provided to respective amplitude and phase imbalance compensation modules to adjust the amplitude and phase characteristics of at least one of the real and imaginary signal components.
Abstract:
A method for emulating signal impairments to enable dynamic evaluation of transmit and receive modem performance through the use of computer-generated models enabling both an evaluation of system performance as well as a comparison of results obtained from system designs respectively exposed to both impaired and unimpaired conditions to enable direct comparison as well as comparison with standardized measurement values to facilitate system design activities prior to any hardware implementation.
Abstract:
In order to compensate for performance degradation caused by inferior low-cost analog radio component tolerances of an analog radio, a wireless communication transmitter employs a control process to implement numerous digital signal processing (DSP) techniques to compensate for deficiencies of such analog components so that modern specifications may be relaxed. By monitoring a plurality of parameters associated with the analog radio, such as temperature, bias current or the like, enhanced phase and amplitude compensation, as well as many other radio frequency (RF) parameters may be implemented.
Abstract:
In order to compensate for performance degradation caused by inferior low-cost analog radio component tolerances of an analog radio, a future system architecture (FSA) wireless communication transceiver employs numerous digital signal processing (DSP) techniques to compensate for deficiencies of such analog components so that modern specifications may be relaxed. Automatic gain control (AGC) functions are provided in the digital domain, so as to provide enhanced phase and amplitude compensation, as well as many other radio frequency (RF) parameters.
Abstract:
A wireless communication system implements wireless communications between a base station and a plurality of User Equipments (UEs) including paging of UEs by initially processing paging indicator information. A first embodiment involves a UE's physical layer L1 being configured for interpreting a paging indicator (PI) to activate a preset decoding configuration to process paging data in a pre-specified paging channel (PCH). A second embodiment involves the physical layer control of a next higher level, L2, interpreting the paging indicator and configuring the physical layer L1 to process paging data in a pre-specified PCH.