Abstract:
A light detection device includes a controller that controls electric potentials of a charge collection electrode and a transfer gate electrode so that potential energy in a region immediately below the charge collection electrode is a first level, and potential energy in a region immediately below the transfer gate electrode is higher than the potential energy in the region immediately below the charge collection electrode in a first period, and so that the potential energy in the region immediately below the charge collection electrode is a second level higher than the first level, and the potential energy in the region immediately below the transfer gate electrode is lower than the potential energy in the region immediately below the charge collection electrode in a second period after the first period.
Abstract:
A ranging method uses a light source and a range sensor. The range sensor includes a charge-generating area and first and second charge-accumulating areas. Charges generated in the charge-generating area are transferred to the first charge-accumulating area during a first period so as to be accumulated in the first charge-accumulating area and the second charge-accumulating area during a second period so as to be accumulated in the second charge-accumulating area. A distance d to an object OJ is arithmetized based on a quantity of charges accumulated in the first charge-accumulating area and a quantity of charges accumulated in the second charge-accumulating area. When pulse light is emitted from the light source, the pulse light whose light-intensity stable period within the emission period of the pulse light is set in advance to be longer than each of the first and second periods is emitted from the light source.
Abstract:
In a ranging image sensor, each pixel includes an avalanche multiplication region, a charge distribution region, a pair of first charge transfer regions, a pair of second charge transfer regions, a well region, a photogate electrode, a pair of first transfer gate electrodes, and a pair of second transfer gate electrodes. The first multiplication region of the avalanche multiplication region is formed so as to overlap the charge distribution region and so as not to overlap the well region in the Z direction. The second multiplication region of the avalanche multiplication region is formed so as to overlap the charge distribution region and the well region in the Z direction.
Abstract:
The present embodiment relates to a distance sensor that reduces a difference in amounts of current injected into each of plural charge collection regions prepared for one photosensitive region in order to avoid saturation caused by disturbance light. A current injection circuit injecting current into each charge collection region includes a voltage generation circuit generating a control voltage for adjustment of the injected current amount, and the voltage generation circuit generates the control voltage corresponding to a large amount of charge between the charge amounts of storage nodes coupled, respectively, to the charge collection regions. Meanwhile, a cascode device is disposed between a transistor configured to adjust the amount of current according to the control voltage and the storage node, and a potential of a current output end of the transistor and a potential of the storage node are separated.
Abstract:
The present embodiment relates to a distance sensor configured to inject an equal amount of current into storage nodes coupled, respectively, to charge collection regions where charges of a photosensitive region is distributed by driving of first and second transfer electrodes and obtain a distance to an object based on difference information on charge amounts of the respective storage nodes. Saturation caused by disturbance light of each storage node is avoided by injecting the equal amount of current to each storage node, and the difference information on the charge amounts of the respective storage nodes, which is not easily affected by the current injection, is obtained by driving the first and second transfer electrodes according to the plurality of frames representing the electrode drive pattern, respectively.
Abstract:
In a ranging device, a controlling unit alternatively switches orders in time series of a first pulse-transfer-signal and a second pulse-transfer-signal per frame term and outputs the first and second pulse-transfer-signals. Furthermore, an arithmetic unit arithmetizes a distance to an object based on total quantities of charges of signal charges, in two frame term consecutive in the time series, accumulated in a first charge-accumulating region and a second charge-accumulating region in accordance with the first and second pulse-transfer-signals having an identical phase.
Abstract:
In a light detection device, a control unit performs a first charge transfer process for transferring charge generated in a charge generation region to a charge storage region by applying an electric potential to a transfer gate electrode so that a potential energy of a region immediately below the transfer gate electrode is lower than a potential energy of the charge generation region and a first read process for reading an amount of charge stored in the charge storage region. In the first charge transfer process, the control unit applies an electric potential to an overflow gate electrode so that a potential energy of a region immediately below the overflow gate electrode is lower than the potential energy of the charge generation region.
Abstract:
A light detection element includes a semiconductor substrate, a light absorbing layer of a first conductivity type formed on the semiconductor substrate, a cap layer of a first conductivity type formed on the light absorbing layer, and a semiconductor region of a second conductivity type formed within the cap layer and forming a pn junction with the cap layer. A depletion layer formed around the semiconductor region does not reach the light absorbing layer in a case where a reverse bias is not applied to the pn junction, and exceeds a position amounting to 50% of a thickness of the light absorbing layer from the cap layer side in a case where a reverse bias of 20 V is applied to the pn junction.
Abstract:
In any three of three range sensors consecutively aligned in a one-dimensional direction, first signal charge-accumulating regions are adjacent to each other in the one-dimensional direction in the range sensor positioned in a center of the three range sensors and the range sensor positioned closer to one side of the one-dimensional direction than the range sensor positioned in the center of the three range sensors, and the first signal charge-accumulating region and the second signal charge-accumulating region are adjacent to each other in the one-dimensional direction in the range sensor positioned in the center of the three range sensors and the range sensor positioned closer to an another side of the one-dimensional direction than the range sensor positioned in the center of the three range sensors.
Abstract:
A signal processing circuit includes: a filter circuit that removes noise from a target signal; and a controller that controls the filter circuit. The filter circuit includes: a CMOS switch including a first MOSFET and a second MOSFET having different channel types and connected in parallel; and a capacitor electrically connected between an output of the CMOS switch and a ground potential. The controller switches a state of the CMOS switch between a first state in which the first MOSFET is in an ON state and a second state in which the first MOSFET is in an OFF state and the second MOSFET is in an ON state. An ON resistance value of the second MOSFET is higher than an ON resistance value of the first MOSFET.