Abstract:
A method of creating aeronautical lift is described which uses a fast voltage electrostatic force to rapidly simultaneously move the top and bottom surfaces of a lifting device downward, followed by a slow voltage electrostatic force to slowly simultaneously return the top and bottom surfaces to their original positions. This cyclic movement reduces downward air pressure on the top surface of the lifting device and increases air pressure on the bottom surface of the lifting device, thus producing aeronautical lift.
Abstract:
Methods are described to provide a new and improved display of phase identification measurements in a three-phase power distribution network, that is easier and more intuitive to interpret and define tagging reference phase. A short sequence of individual phase measurements are displayed as dots inside a static phase attribute display circle. The 3 primary, 12 secondary, and 6 three-phase attributes are displayed around the outside of the phase circle. When using a touch screen Smartphone or Tablet display device, the user simply touches inside the phase circle to rotate the dots around the center of the phase circle, so they line up with the known conductor phase attribute. This rotation defines the tagging reference phase for the circuit.
Abstract:
A Coded Orthogonal Frequency Division Multiplexing (COFDM) communication systems is implemented in which each subcarrier data stream is individually FEC encoded instead of FEC encoding the overall input data stream as implemented in conventional COFDM systems. Specifically, each subcarrier is independently encoded using pseudo orthogonal QPSK M-QAM FEC modulators, transmitted, and decoded using pseudo orthogonal QPSK M-QAM FEC demodulators. Multiplexers and demultiplexers randomize subcarrier symbols across all subcarriers to prevent contiguous subcarrier data errors due to fading or corruption by narrowband interference. This technology can be applied to many wireless and wired communication systems including wireless underwater RF communications.
Abstract:
A bistatic radar receiver is centrally located within an array of multiple bistatic transmitters at an airport to precisely determine bird positions and altitudes. Bird target reflections from multiple transmitters are received by the radar receiver. Target location is determined by the transmitter location, receiver location, and measured transmitter-to-target-to-receiver ranges. Target position and altitude accuracy is similar to GPS. The radar receiver antenna is composed of a vertical array of elements and rotated 360 degrees in azimuth. The output of each element is downconverted, digitized, and digitally beamformed to provide multiple simultaneous antenna beams each electronically scanned in elevation. When bistatic transmitters cannot be deployed, a narrow-azimuth wide-elevation transmit antenna beam is overlapped with a wide-azimuth narrow-elevation receive antenna beam electronically scanned in elevation to provide a composite narrow azimuth and elevation beamwidth.
Abstract:
A target unit mounted on vehicle hitch ball contains a known object target and an optical unit mounted on trailer hitch socket contains an optical sensor. A real image of known object target is projected onto image plane of optical sensor. Vehicle hitching distance and offset from optical axis, normal to image plane origin, is related to real image size and offset from image plane origin respectively. Distance and offset are displayed to driver in the form of remaining distance and relative steering commands.
Abstract:
Lifting devices are described that provide aeronautical lift by either pushing air sideways off its top surface, or by pulling away from top surface air, without changing upward air pressure on its bottom surface. In a first implementation, a pyramid shaped structure is composed of a stack of thin sections whose dimensions are rapidly extended and retracted using ultrasonic movements. Top surface air is pushed sideways when extended followed by momentary low pressure when retracted, thus providing lift. In a second implementation, a rapidly rotating lifting device is composed of a stack of thin round teethed plates, resembling circular saw blades, in which the diameter of each upper plate is slightly smaller than each lower plate. This device also creates lift as teeth push air sideways and gaps between teeth create momentary low pressure. In a third implementation, a lifting device top surface contains an array of MicroElectroMechanical Systems (MEMS) devices, such as Capacitive Micromachined Ultrasonic Transducers (CMUTs), which momentary produce lift by their upper pointing membranes rapidly pulling away from lifting device top surface air when oscillating at high frequency.
Abstract:
A Coded Orthogonal Frequency Division Multiplexing (COFDM) communication systems is implemented in which each subcarrier data stream is individually FEC encoded instead of FEC encoding the overall input data stream as implemented in conventional COFDM systems. Specifically, each subcarrier is independently encoded using pseudo orthogonal QPSK M-QAM FEC modulators, transmitted, and decoded using pseudo orthogonal QPSK M-QAM FEC demodulators. Multiplexers and demultiplexers randomize subcarrier symbols across all subcarriers to prevent contiguous subcarrier data errors due to fading or corruption by narrowband interference. This technology can be applied to many wireless and wired communication systems including wireless underwater RF communications.
Abstract:
A remote phase identification system identifies the unknown phase attribute of any energized conductor within a three-phase power distribution network. A base station at a reference location obtains a reference phase each GPS second and stores it on one or more servers. A field probe at a remote location obtains an instantaneous phase measurement at a GPS second and communicates this phase to a field client. The field client communicates with the server either by wireless Internet or satellite modem to compare its field location phase measurement with the reference location phase measurement taken at the same GPS second. Field client tagging reference phase configuration files are automatically created for any circuit. Configuration files can be named, saved, and loaded and are used by the field client to identify and display the unknown field location phase attribute. A field client can be any personal computer, smartphone, or personal digital assistant.
Abstract:
A ground based avian radar receive antenna is implemented using a vertically oriented offset parabolic cylindrical antenna. The desired azimuth beamwidth is determined by the width of the parabolic cylinder reflector surface and the desired elevation beamwidth by the height of the parabolic cylinder reflector surface. A vertical array of antenna elements is mounted along the vertical focal line to provide electronic scanning in elevation. Low sidelobe levels are obtained using tapered antenna element illumination. Low cost modular construction with high reflector accuracy is obtained by attaching a thin metal reflector to thin ribs machined or stamped in the shape of the parabolic cylinder reflector surface. The antenna is enclosed in a radome and mechanically rotated 360 degrees in azimuth.
Abstract:
An aircraft avian radar is implemented using an existing aircraft transponder, Mode S, or TCAS installation as the radar transmitter. To eliminate self jamming of low level avian target signals by high level transmitter signals, the ending period of the transmission signal is digitized and cross correlated with the ending period of reflected avian target signals received after the transmission signal has ended. In a first implementation, the current transponder antenna is used for both transmission and reception. In a second implementation, an external receive only antenna is mounted in a position that maximizes the transmit antenna to receive antenna isolation. In a third implementation, a signal canceller and sample of the transmit signal are used to cancel or null out as much transmit signal as possible that couples directly to the receive antenna.