Abstract:
According to the present invention, there are provided a chamber for transplantation, as a planar chamber for transplantation which has a structure in which membranes for immunoisolation face each other, and which is capable of stably enclosing a biological constituent, including a membrane for immunoisolation at a boundary between an inside and an outside of the chamber for transplantation, in which the membranes for immunoisolation which face each other have joint portions that are joined to each other, an interior space includes a point at a distance of 10 mm or longer from any position of the joint portion, and the membrane for immunoisolation has flexibility that allows a distance of 1 mm to 13 mm as the following distance: in a case where a portion of 10 mm from a side surface of one short side of a 10 mm×30 mm rectangular test piece of the membrane for immunoisolation is vertically sandwiched between flat plates, and the flat plates are placed horizontally, a distance between a horizontal plane including a center plane in a thickness direction of the sandwiched portion of the membrane for immunoisolation, and a part, which is farthest from the horizontal plane, of a residual 20 mm-portion projecting from the flat plate; and a device for transplantation including the chamber for transplantation enclosing a biological constituent therein.
Abstract:
There is provided a production method for a microcapsule in which cells are encapsulated with alginic acid and a polycation, the method including dropwise adding a cell suspension containing cells and alginic acid into a calcium ion-containing solution to obtain a liquid droplet in which the cells are encapsulated in alginic acid, and immersing the liquid droplet in a coating liquid containing a polycation, to obtain the microcapsule, where the coating liquid contains a calcium ion or a barium ion at a concentration of 0.1 mM or more and 50.0 mM or less. According to the production method of the present invention, it is possible to produce a microcapsule having a uniform shape and particle size.
Abstract:
According to the present invention, there are provided a membrane for immunoisolation, including: a porous membrane that contains a polymer, in which the porous membrane includes a layered compact portion where a pore diameter is the smallest within the membrane, and a pore diameter continuously increases in a thickness direction from the compact portion toward at least one surface of the porous membrane; a chamber for transplantation for enclosing a biological constituent therein, including the above-described membrane for immunoisolation on at least a part of a surface forming an inside and an outside of the chamber for transplantation; and a device for transplantation, including the above-described chamber for transplantation enclosing the biological constituent therein. In the membrane for immunoisolation of the present invention which can be manufactured at low costs, a deterioration in substance permeability is unlikely to occur.
Abstract:
A gas separation membrane, the gas separation membrane module, and the gas separation device include a first separation layer, and a second separation layer, the first separation layer has an Si/C ratio of 0.3 or less, the Si/C ratio being a ratio of the number of silicon atoms to the number of carbon atoms at the interface of the first separation layer on the second separation layer side, the second separation layer has a maximum value of an F/C ratio of 0.20 or more, the F/C ratio being a ratio of the number of fluorine atoms to the number of carbon atoms, and an Si/C ratio of 0.3 or less in a portion where the F/C ratio is maximum.
Abstract:
An object of the present invention is to provide a composition containing at least microcapsules and cell structures, where the composition can exhibit a high treatment effect in a case of being transplanted into a living body. There is provided a composition including at least (a) a microcapsule containing a polymer hydrogel; and (b) a cell structure containing a biocompatible polymer block and a cell, in which a plurality of biocompatible polymer blocks are arranged in gaps between a plurality of cells, where at least a part of the cell structures are encapsulated in the microcapsules.
Abstract:
According to the present invention, there is provided a membrane for immunoisolation, including a porous membrane that contains a polymer, in which Formulas (I) and (II) are satisfied for at least one surface of the porous membrane, B/A≤0.7 (I) and A≥0.015 (II) (in the formula, A represents a ratio of an N element to a C element on a surface of the membrane, and B represents a ratio of the N element to the C element at a depth of 30 nm from the surface of the membrane); a chamber for transplantation for enclosing a biological constituent therein, including the above-described membrane for immunoisolation on at least a part of a surface forming an inside and an outside of the chamber for transplantation; and a device for transplantation includes the above-described chamber for transplantation enclosing the above-described biological constituent therein. The membrane for immunoisolation of the present invention has a high bioaffinity.
Abstract:
Provided are a gas separation membrane which has a resin layer containing a compound having a siloxane bond, in which the resin layer containing a compound having a siloxane bond satisfies Expressions 1 and 2, and at least one of gas permeability or gas separation selectivity is high under high pressure; a method of producing a gas separation membrane; a gas separation membrane module; and a gas separator. 0.9≧A/B≧0.55 Expression 1 B≧1.7 Expression 2 In the expressions, A represents an O/Si ratio that is a ratio of the number of oxygen atoms relative to the number of silicon atoms contained in the resin layer containing a compound having a siloxane bond at a depth of 10 nm from the surface of the resin layer containing a compound having a siloxane bond, and B represents an O/Si ratio that is a ratio of the number of oxygen atoms relative to the number of silicon atoms in the surface of the resin layer containing a compound having a siloxane bond.
Abstract:
A composition for forming a carbon dioxide separation membrane, which includes a water-absorbing polymer, a carbon dioxide carrier, and a polysaccharide, is disclosed.
Abstract:
An object of the present invention is to provide a cell transplant device having an ability to induce angiogenesis around the cell transplant device, and a method for manufacturing the same. According to the present invention, a cell transplant device including a cell structure (A) that includes a plurality of biocompatible polymer blocks and a plurality of cells of at least one type, and in which at least one of the biocompatible polymer blocks is disposed in gaps between the plurality of cells; and an immunoisolation membrane (B) that encloses the cell structure is provided.
Abstract:
Provided are a gas separation membrane which has a resin layer containing a compound having a siloxane bond, in which the resin layer containing a compound having a siloxane bond satisfies Expressions 1 and 2, and at least one of gas permeability or gas separation selectivity is high under high pressure; a method of producing a gas separation membrane; a gas separation membrane module; and a gas separator. 0.9≥A/B≥0.63 Expression 1 B≥1.7 Expression 2 In the expressions, A represents an O/Si ratio that is a ratio of the number of oxygen atoms relative to the number of silicon atoms contained in the resin layer containing a compound having a siloxane bond at a depth of 10 nm from the surface of the resin layer containing a compound having a siloxane bond, and B represents an O/Si ratio that is a ratio of the number of oxygen atoms relative to the number of silicon atoms in the surface of the resin layer containing a compound having a siloxane bond.