Abstract:
A system, method, and computer readable medium for determining at least one feature of at least one lens mounted in a spectacle frame. The system includes a non-point light pattern generating device configured to generate a predefined non-point light pattern, and arranged to have the predefined non-point light pattern reflected on the at least one lens, an image acquisition device configured to acquire an image of the spectacle frame including an image of the reflected non-point light pattern, and a processing unit configured to determine at least the contour of the at least one lens in function of at least one feature of the image of the reflected non-point light pattern.
Abstract:
Disclosed is a method for determining an optical system intended to equip a subject, the method including the steps of: —determining an index of sensitivity indicating, when the subject is placed in an environment including surfaces and/or borders forming globally a geometry of this environment; and landmarks associated with specific locations within the environment, how the subject relies on the global geometry and/or on the local landmarks of the environment to navigate within the environment; and—determining the optical system based on this index of sensitivity. The invention also relates to an ophthalmic lens and to an ophthalmic filter determined by such method.
Abstract:
A method for determining at least one optical design parameter for a progressive ophthalmic lens intended to be fitted in a frame of a wearer, depending on the wearer's visual behaviour, includes: a) placing the wearer in a situation in which he carries out a visual task at a first working distance; b) during this task, determining at least two gaze directions of the wearer at this first working distance in a frame of reference of the wearer's head; c) determining a relative position of a surface related to the frame or to an ophthalmic lens intended to be fitted in the frame; d) determining for each gaze direction at the first working distance the intersection between this gaze direction and the surface so as to establish a map of these points of intersection on this surface; and e) deducing the sought-after optical design parameter from this map.
Abstract:
A method for monitoring a visual capacity modification parameter of a user of at least one display device, the visual capacity modification parameter being indicative of the modification of a parameter linked to the visual capacity of the user related to the use of the at least one display device, the method includes a display use data determining step during which display use data indicative of a use of the at least one display device by the user are determined, a visual capacity modification parameter determining step during which a modification parameter of the visual capacity of the user is determined based on said display use data, and an information generating step during which an information based on said modification parameter of the visual capacity of the user is generated.
Abstract:
A device for measuring the objective ocular refraction of a patient for a plurality of visual ranges, which includes a variable proximity optical sight system capable of selectively generating a first target and a second target and an image-capturing device having an optical measurement axis intended for being aligned with a line of sight of the patient, the image-capturing device being capable of capturing a first ocular refraction image when the first target is activated and a second ocular refraction image when the second target is activated. The image-capturing device and the optical sight system are arranged such that the optical measurement axis and the optical sight axis are arranged such that the optical measurement axis and the optical sight axis are contained in a single plane and the optical measurement axis is tilted at an angle alpha between +5 degrees and +85 degrees relative to the horizontal.
Abstract:
Disclosed is a method including the steps of: a) illuminating a pupil of the eye of a subject by a light source; b) acquiring at least one picture of the pupil including an image of the reflection of the light source on the retina of the eye, by means of an image-capture apparatus; and c) and determining a refraction feature of the eye from at least a geometrical feature, a positional feature, or an intensity distribution of the image of the reflection of the light source. Optical distances between the pupil and, respectively, the light source and the image-capture apparatus, are different. An associated device is also described.
Abstract:
An optical device including an active programmable lens having an adjustable optical power depending on a prescription of a wearer and being relative to a vision distance and/or direction of an eye of the wearer, a vision sensor adapted to measure vision data relating to the vision distance and/or direction of the eye, and an optical power controller that includes a memory storing computer executable instructions and adapted to store measured vision data and two predetermined optical power states corresponding to an optical power relative to a range of vision distance and/or direction of the eye, and a processor for executing the stored computer executable instructions, which include instructions for adjusting the adjustable optical power between the predetermined optical power states with a resolution smaller than or equal to 0.25 D when the vision data passes from one range of vision distance and/or direction to another.
Abstract:
The invention relates to an optical device (10) adapted to be worn by a wearer comprising at least: —a programmable lens (20) having an adjustable optical function and extending between at least one eye of the wearer and the real world scene when the optical device is worn by the wearer, —an optical function controller (30) comprising —a memory (32) storing at least computer executable instructions; and —a processor (34) for executing the stored computer executable instructions so as to control the optical function of the programmable lens (20), wherein the computer executable instructions comprise instructions for adjusting the optical function of the programmable lens (20) over a period of time determined so that the wearer does not perceive the adjustment of the optical function.
Abstract:
Disclosed is a method for determining an eye parameter of a user of a display device, the eye parameter relating to a dioptric parameter of an ophthalmic lens to be provided to the user, the method including: a display device providing step, during which a binocular display device is provided to the user,—an image display step, during which an image is displayed to the user when using the display device; a display parameter modifying step, during which at least one parameter of the display device is modified so as to modify the virtual display distance of the perceived image, wherein the display parameter modifying step is repeated until image subjective quality of the perceived image is perceived by the user as optimal; and an eye parameter determining step during which an eye parameter is determined based on the parameter of the display device.
Abstract:
Disclosed is a measurement method for determining a value of a visual correction need for near vision of an individual in a natural posture for near vision. A recognizing limit distance is determined so that the individual is able to recognize at least one predetermined symbol farther than the limit distance relatively to the individual and unable to recognize the at least one predetermined symbol closer to the individual than the limit distance. A portable medium displaying the predetermined symbol is displaced in front of the face and eyes of the individual to change a frontal distance between his/her eyes and the portable medium and in which when a recognizing limit distance is detected by the individual, the limit distance is measured and the value of the visual correction need is determined from the measured limit distance, wherein the visual correction need includes an accommodation compensation need.