Abstract:
Provided is a complex biometric sensor. The complex biometric sensor includes a substrate including a light emitting region, a first light receiving region, and a second light receiving region, a light emitting part disposed adjacent to the substrate in the light emitting region, a color conversion layer disposed on the substrate in the light emitting region and vertically overlapping the light emitting part; a first light receiving layer disposed on the substrate in the first light receiving region, and a second light receiving layer disposed on the substrate in the second light receiving region. The light emitting part generates light of a first wavelength. The color conversion layer receives light of the first wavelength and emits the light of the first wavelength and light of the second wavelength. The first light receiving layer detects the light of the first wavelength. The second light receiving layer detects the light of the second wavelength.
Abstract:
The inventive concept relates to a thermal conductivity measuring device and a method of measuring the thermal conductivity. The thermal conductivity measuring device may include a first structure which is connected to one side end of a sample and receives heat from a heat source; a second structure connected to the other side end of the sample; a first stage connected to the first structure while supporting the first structure; a second stage connected to the second structure while supporting the second structure; a connection unit connected between the first stage and the second stage; and a measuring unit measuring temperatures of the first and second structures and the first and second stages. Since the thermal conductivity measuring of the inventive concept correct a temperature change of a stage due to heat transmission emitted from the stage considering a measurement environment, reliability of measurement may be improved.
Abstract:
A composition of aqueous slurry capable of exerting uniform coating on a hydrophobic separator for a secondary battery is disclosed. Unlike other aqueous polymers, a polyvinyl alcohol-based polymer can be physically and chemically bound to a surface of a hydrophobic separator made of polyolefins such as polyethylene, polypropylene, and the like. Therefore, when the aqueous slurry including the polyvinyl alcohol-based polymer is fabricated and a hydrophobic separator is coated with the aqueous slurry, the hydrophobic separator may be smoothly coated with the aqueous slurry.
Abstract:
Provided is a pressure sensitive display device including a sensing substrate, a reaction substrate provided on the sensing substrate, and spacers provided between the sensing substrate and the reaction substrate to space the sensing substrate apart from the reaction substrate. Here, the sensing substrate includes a flexible substrate and a touch electrode provided on one surface of the flexible substrate, which faces the reaction substrate. The reaction substrate includes a transparent substrate, a transparent electrode provided on one surface of the transparent substrate, which faces the sensing substrate, and a light emitting layer disposed on the transparent electrode.
Abstract:
An all-solid-state battery for an ion-conducting binder evaluation system for a secondary battery may comprise: an electrode manufactured with an electrode composition, which includes electrode active materials and a binder, so that ion transport in the electrode is dependent on a mechanism of ion diffusion between the electrode active materials by excluding an electrolyte component from the electrode; a counter electrode disposed to face the electrode; and a solid electrolyte layer disposed between the electrode and the counter electrode, wherein a pore density of the electrode, which is an electrolyte-free electrode, is less than or equal to 15% of an electrode bulk density.
Abstract:
Provided is a stretchable display including an elastic body, a light emitting unit on the elastic body, and a wiring unit on the elastic body, wherein the light emitting unit includes a first substrate unit on the elastic body, a buffer layer on the first substrate unit, and a light emitting element on the buffer layer, the wiring unit includes a second substrate unit on the elastic body, a driving element configured to control the light emitting element, a wiring configured to electrically connect the driving element and the light emitting element, and an insulation layer configured to cover the driving element and the wiring, the light emitting unit and the wiring unit have respective corrugation structures, a thickness of the light emitting unit is larger than that of the wiring unit, a modulus of elasticity of the buffer layer is larger than that of the insulation layer, and a modulus of elasticity of the elastic body is smaller than that of the insulation layer.
Abstract:
The inventive concept relates to a thermal conductivity measuring device. The thermal conductivity measuring device may include a first structure which is connected to one side end of a sample and receives heat from a heat source; a second structure connected to the other side end of the sample; a first stage connected to the first structure while supporting the first structure; a second stage connected to the second structure while supporting the second structure; a connection unit connected between the first stage and the second stage; and a measuring unit measuring temperatures of the first and second structures and the first and second stages. Since the thermal conductivity measuring of the inventive concept correct a temperature change of a stage due to heat transmission emitted from the stage considering a measurement environment, reliability of measurement may be improved.
Abstract:
The inventive concept provides an organic electronic device and a method of fabricating the same. The organic electronic device includes a flexible substrate configured to include a first region and a second region which are laterally spaced apart from each other, an organic light-emitting diode disposed in the first region of the flexible substrate, and a photodetector disposed in the second region of the flexible substrate, wherein the organic light-emitting diode and the photodetector are disposed on the same plane.
Abstract:
Provided is an apparatus for manufacturing a flexible integrated substrate. The apparatus for manufacturing the flexible integrated substrate includes a substrate transfer unit configured to transfer a substrate which a functional film is disposed on one surface thereof, a unwinding unit configured to unwind a flexible support film wound in a roll shape, a winding unit configured to wind the support film provided from the unwinding unit in the roll shape, and a pressing unit configured to press the support film being transferred from the unwinding unit to the winding unit to the substrate being transferred to attach the functional film to the support film.