Abstract:
A memory management method for receiving a multi channel hybrid automatic repeat request (HARQ) packet may enable smooth communication and reduce costs by maintaining a small memory size of a receiver in a communication system using a HARQ including a plurality of channels.
Abstract:
A channel access method in an unmanned aerial vehicle (UAV) control and non-payload communication (CNPC) system is provided. The channel access method may include setting an uplink frequency and a downlink frequency to each of a ground station and an airborne radio station, and performing, by the ground station and the airborne radio station, an initial access using the uplink frequency or the downlink frequency.
Abstract:
A system and method for wireless communication that schedules a connection time of a terminal based on a delay time is provided. A base station of the system for wireless communication may include a delay time determiner to determine a delay time of a terminal, based on preamble information for a plurality of terminal groups based on location information of the terminal, and a scheduler to schedule a connection time for the terminal to connect to the base station, using the delay time.
Abstract:
Disclosed is a channel assignment method of a communication system for controlling an unmanned aerial vehicle (UAV), the method including receiving assignment data and an interference analysis criterion from a spectrum authority; performing an interference analysis and selecting a control and non-payload communication (CNPC) channel based on the assignment data and the interference analysis criterion; and requesting the spectrum authority for assigning the CNPC channel.
Abstract:
A handover method and a control transfer method are provided. A handover method of performing an inter-cell handover between a first ground station and a second ground station may include setting a first channel to the second ground station, measuring, by an airborne radio station, a second channel and reporting a measurement result to the first ground station, sending, by the first ground station, a handover request to at least one of a ground control station (GCS) or a control and non-payload communication (CNPC) network, determining, by the at least one of the GCS or the CNPC network, whether to perform a handover, and transmitting, by the at least one of the GCS or the CNPC network, a handover instruction to the airborne radio station based on a result of the determining.
Abstract:
A handover method and a control transfer method are provided. A handover method of performing an inter-cell handover between a first ground station and a second ground station may include setting a first channel to the second ground station, measuring, by an airborne radio station, a second channel and reporting a measurement result to the first ground station, sending, by the first ground station, a handover request to at least one of a ground control station (GCS) or a control and non-payload communication (CNPC) network, determining, by the at least one of the GCS or the CNPC network, whether to perform a handover, and transmitting, by the at least one of the GCS or the CNPC network, a handover instruction to the airborne radio station based on a result of the determining.
Abstract:
Provided are a terrestrial communication method, an apparatus, and a system, wherein the system uses a first frequency used in a satellite communication system, detect a terminal of the satellite communication system in a cell of the terrestrial communication system, and perform downlink transmission using the first frequency when the terminal is not detected.
Abstract:
Disclosed is a terminal controlling system and method for controlling multi-device. A method of operating a terminal controlling system according to the present disclosure includes: by a first terminal, detecting a second terminal and producing detection result information; by the first terminal, transmitting the detection result information to a first control device controlling the first terminal; by the first control device, making a request to a server device for information on the second terminal; by the first control device, making a request to a second control device controlling the second terminal for inter-terminal interworking, using the information on the second terminal received from the server device; by the first control device, receiving a response to the inter-terminal interworking request from the second control device; and by the first terminal, communicating with the second terminal based on the response received from the first control device.
Abstract:
In a satellite and terrestrial integrated communication system in which a satellite communication system and a terrestrial communication system share and use an identical frequency band, an interference to a mobile earth station (MES) of the satellite communication system using an identical frequency by an uplink signal transmitted to a base station of the terrestrial communication system by a user equipment (UE) may be mitigated. When a communication of the MES is requested, a satellite communication apparatus to perform resource block (RB) allocation for a satellite communication in the satellite and terrestrial integrated system may include a controller configured to allocate a first RB to the MES, and a communicator configured to transmit a use notification of the first RB to at least one terrestrial base station located in an interference range of an uplink signal of the MES.
Abstract:
A method in which a satellite or a terrestrial earth station that is included in a satellite communication system that shares a frequency resource with a terrestrial communication system allocates a frequency resource is provided. The satellite divides an area of a first satellite beam into at least one sector. The satellite determines a first sector in which a satellite terminal is located among the at least one sector. The satellite determines a second sector corresponding to the first sector among at least one sector that is included in a first terrestrial cell. The satellite allocates at least one of first frequency resources for the second sector to the satellite terminal. The first terrestrial cell is located within an area of a second satellite beam adjacent to the first satellite beam.