Abstract:
Compressive sampling is used to generate pilot symbols to be transmitted over an array of antennas in a MIMO wireless communications device. A pilot symbol is transmitted over the array of antennas according to a spatially randomized antenna transmission function that randomly changes across the array of antennas. The randomized antenna transmission function may randomly select/deselect antennas and/or randomly change amplitude and/or phase of the pilot symbol transmission. Channel estimates can be constructed at a receiver based on the spatially randomized pilot symbols that were transmitted.
Abstract:
Methods may be provided to transmit data from a wireless terminal operating in a radio access network. For example, sampling rate conversion may be performed on a serial stream of modulation symbols to generate sampling rate converted symbols, and the sampling rate converted symbols may be transmitted over a wireless channel to a node of the radio access network. Related terminals are also discussed.
Abstract:
A method and an arrangement (600) in a user equipment (140) for quantizing channel state information in a coordinated multi-point transmission radio communication system (100). A dominant path is between the user equipment (140) and a first network node (110) and a non-dominant path is between the user equipment (140) and a second network node (120, 130). A ratio of the non-dominant path channel response, such as fast fading, to the dominant path channel response is quantized by using a codebook disclosed herein. A method and an arrangement (400) for generating a codebook by applying a log squared error distortion measure in an iterative algorithm. A method and an arrangement (900) in a user equipment (140) for allocating available bits among at least two quantized ratios in a channel state information feedback procedure. The bits are allocated by means of selecting (270) at least one codebook based on statistic properties, such as path gain, of the non-dominant path.
Abstract:
Multi-antenna transmission control presented herein involves generating a set of virtual channel realizations at the transmitter that shares the same second-order statistics as the actual channel realizations observed for a targeted receiver. By making the control-related quantities of interest at the transmitter depend on the long-term statistics of the channel, the actual channel realizations are not needed for transmission control, e.g., for accurate Multiple-Input-Multiple-Output (MIMO) preceding. As such, the use of virtual channel realizations enables transmission control that approaches the “closed-loop” channel capacity that would be provided by full feedback of the (instantaneous) actual channel realizations, without requiring the overhead signaling burden that attends full feedback.
Abstract:
A method of managing wireless transmissions from a mobile handset includes determining whether the mobile handset is a source of a Random Access Channel (RACH) overload in the wireless network and, upon determining that the mobile handset is a source of the RACH overload, configuring the mobile handset to replace usage of a first RACH resource causing the RACH overload with usage of a second RACH resource specified by the processor.
Abstract:
Systems and methods are disclosed for efficient operation of wireless access nodes in a dense deployment of wireless access nodes in a cellular communication network. In general, the dense deployment of wireless access nodes includes multiple wireless access nodes in a service area. The service area is preferably, but not necessarily, a low-load service area. As used herein, a low-load service area is an area within an overall service area of the dense deployment of wireless access nodes in which all wireless access nodes are not needed to provide a desired data capacity. Overlapping radio coverage areas of the wireless access nodes in, or serving, the service area are leveraged to enable efficient operation of the wireless access nodes in the service area.
Abstract:
The required bitrate for reporting channel state information from a network transceiver to the network is dramatically reduced, while maintaining fidelity of channel estimates, by exploiting prior channel estimates and the time correlation of channel response. For a selected set of sub-carriers, the transceiver estimates channel frequency response from pilot signals. The transceiver also predicts the frequency response for each selected sub-carrier, by multiplying a state vector comprising prior frequency response estimate and a coefficient vector comprising linear predictive coefficients. The predicted frequency response is subtracted from the estimated frequency response, and the prediction error is quantized and transmitted to the network. The network maintains a corresponding state vector and predictive coefficient vector, and also predicts a frequency response for each selected sub-carrier. The received prediction error is inverse quantized and subtracted from the predicted frequency response to yield a frequency response corresponding to that estimated at the transceiver.
Abstract:
An apparatus, system, and method for dynamic, distributed coordination of parameters between a plurality of base stations in a cellular telecommunication network. An inter-cell communication interface connecting each given base station with the given base station's neighboring base stations is extended to communicate parameter settings between the given base station and the neighboring base stations. An apparatus in each given base station receives from the given base station's neighboring base stations, parameter settings being utilized by the neighboring base stations for transmitting and/or receiving in associated neighboring cells. The apparatus utilizes the parameter settings received from the neighboring base stations as factors to determine local parameter settings for the given base station. The given base station then sends the local parameter settings and supplemental information to the neighboring base stations so that optimal network-wide parameter settings can be selected.
Abstract:
A compression/decompression method for backhaul communication of a complex-valued radio signal between base stations and the network processing unit, such as a Central Processor of a Coordinated MultiPoint (CoMP) system, significantly reduces backhaul bandwidth. The spatial and temporal correlations of the wireless IQ signal are exploited in order to remove redundancy and substantially reduce signal bandwidth. Feature component signals of significance are extracted through linear transformation to form the radio signal, and are individually quantized, possibly at different bit rates in accordance with their relative importance. The transformation can either be pre-determined or computed in real-time based on the spatial and temporal statistics of the radio signal. In the latter case, the transformation matrix or matrices are also sent over the backhaul in order to allow the radio signal to be reconstructed at the receiving end. Different methods of generating the transformation matrices are proposed.
Abstract:
According to a method and apparatus taught herein, a network node includes a receiver circuit that determines soft values for received packets corresponding to the information bit groups associated with network coding operations, where the soft values are determined for each information bit group based on joint probabilities of the information bits within the information bit group. For example, first soft values are determined for the information bit groups in a first (received) constituent packet and second soft values are likewise determined for the information bit groups in a network-coded (received) packet that depends on the first constituent packet and a second constituent packet. Third soft values are generated for the information bit groups of the second constituent packet based on jointly evaluating the first and second soft values.