Abstract:
An optical detecting apparatus and an operating method thereof are disclosed. The optical detecting apparatus includes a light path module, an actuating module, and a data processing module. The light path module is used to emit a light source to a substance and receive an optical signal generated by the substance reflecting the light source. The actuating module is used to actuate the substance to generate a vibration. The data processing module is used to record and analyze a detected result related to the material properties of the substance and adjust detecting parameters of the light path module and the actuating module respectively.
Abstract:
A catheter apparatus includes a replaceable module, a main body portion and a sensing module. The main body portion includes a tube, a urine guide opening and an elastic unit. The replaceable module includes a control unit. A first terminal of the tube is coupled to the replaceable module and a second terminal of the tube is inserted into the bladder. The urine guide opening is disposed at the second terminal of the tube and used to guide urine into the tube when the second terminal of the tube is inserted into the bladder. The elastic unit is disposed at the second terminal of the tube and coupled to the control unit. The sensing module is coupled to the control unit and used to sense whether the second terminal of the tube is inserted to the correct position in the bladder and transmit sensing result to the control unit.
Abstract:
A light source module of an optical apparatus is disclosed. The light source module includes a laser pump unit, a lens unit, and a fiber unit. The laser pump unit generates a laser source. The lens unit converts the laser source into a condensed beam. The fiber unit receives the condensed beam and emits an optical signal. The light source module can achieve effects of low cost, large bandwidth, high resolution, and high stability with well-designed pump power of the laser pump unit, and length, doping material, and core size of the fiber unit.
Abstract:
An optical apparatus includes a light source, an optical coupling module, a reference light reflection module, and a data processing module. The light source provides an incident light. The optical coupling module divides the incident light into a reference light and a detection light emitting to the reference light reflection module and the object respectively. The reference light reflection module reflects the reference light and rapidly change the optical path of the reference light. The optical coupling module receives a first reflected light generated by the reference light reflection module reflecting the reference light and a second reflected light generated by the object reflecting the detection light and it interferes the first reflected light and second reflected light to generate a light interference signal. The data processing module receives and analyzes the light interference signal to obtain an optical detection result related to the object.
Abstract:
An optical measuring apparatus includes a first light source, a second light source and a switching unit. The first light source is used to emit a first light toward a first direction. The second light source is used to emit a second light toward a second direction. The switching unit selectively switches to a first mode or a second mode. When the switching unit switches to the first mode, it blocks the second light and let the first light emitted to an aiming region on eyeball to perform an optical aiming and determine an eye axis center position on the eyeball; when the switching unit switches to the second mode, the switching unit changes the second light from the second direction to the first direction to let the second light emitted to the eye axis center position on the eyeball to perform an optical measurement.
Abstract:
An optical apparatus applied to ophthalmology detection is disclosed. The optical apparatus includes a first light source module, a second light source module, and an interference module. The first light source module is formed by a laser light source and lens units and used to emit a first light signal. The second light source module is formed by fiber units and lens units. The second light source module is coupled to the first light source module in series. The second light source module is used to receive a first light signal and emit a second light signal. The interference module is coupled to the second light source module and used to receive the second light signal and provide a first incident light and a second incident light to an object to be detected and a reference mirror respectively.
Abstract:
An optical apparatus applied to ophthalmology detection is disclosed. The optical apparatus includes an image capturing unit, a data comparing unit, a detection unit, a location determining unit, and a data output unit. The image capturing unit captures images of different portions of a face of a person to be tested to obtain a plurality of face images. The data comparing unit compares the plurality of face images with a built-in database. The detection unit detects on an eye of the person to be tested. The location determining unit automatically determines whether the eye detected by the detection unit is left-eye or right-eye. The data output unit selectively outputs a detection result of the detection unit, a comparing result of the data comparing unit, and/or a determining result of the location determining unit.
Abstract:
The optical apparatus includes an optical measurement module, a central processing module, and an air-puff module. The air-puff module is used for generating an air pressure to a surface of the cornea according a blow pattern to cause a deformation of the cornea. The optical measurement module includes a first unit and a second unit. The first unit is used for measuring an intraocular pressure (IOP) of the eye according to the deformation of the cornea. The second unit is used for measuring properties of the cornea in an optical interference way. The central processing module is coupled to the first unit and the second unit and used for receiving and processing the intraocular pressure and the properties of the cornea to provide a result.
Abstract:
A measurement apparatus used to measure an object is disclosed. The measurement apparatus includes at least one sensing unit, a first optical module, a second optical module, a data processing unit and at least one prompting unit. The at least one sensing unit is disposed near the object to perform a contact or proximity sensing on the object. The first optical module is disposed near the object and adjacent to the at least one sensing unit. The first optical module includes at least one lens unit. The second optical module and the object are disposed at opposite sides of the first optical module. The second optical module includes a light source and at least one optical component. The data processing unit is coupled to at least one sensing unit. The at least one prompting unit is coupled to the data processing unit.
Abstract:
An optical device for corneal measuring includes a light source module, a first optical module, a second optical module including a reference mirror, a light splitter and an image analysis unit. The light of the light source module is transmitted to the first and second optical modules through the light splitter. The light is transmitted to a cornea through the light splitter and the first optical module and reflected by the cornea to form a first light, the light is transmitted to the reference mirror through the light splitter and reflected by the reference mirror to form a second light. The first and second lights are transmitted to the light splitter and the image analysis unit. The reference mirror moves along a first direction, and when the first light and the second light interfere with each other, a relative optical path length is obtained.