Abstract:
There is disclosed a Fresnel liquid crystal lens panel for a naked eye three-dimensional display, a manufacturing method thereof, and a 3D display using the same. The Fresnel liquid crystal lens panel comprises: a Fresnel liquid crystal lens panel for a naked eye three-dimensional display, comprising: a first substrate comprising a first transparent substrate and a first electrode; a second substrate comprising a second transparent substrate and a plurality of second electrodes; a liquid crystal layer divided into a plurality of lens regions to form a Fresnel liquid crystal lens; and a plurality of insulating barrier blocks being located at an inner side of the second substrate and arranged between two adjacent side lobes of the Fresnel liquid crystal lens. Since the adjacent side lobes are partitioned by means of the insulating barrier block at the boundary therebetween, the crosstalk within the lens region is reduced.
Abstract:
A parallax barrier, a manufacturing method thereof and a display system are provided, the parallax barrier including: a first substrate and a second substrate cell-assembled; a peripheral cavity wall, used to form a closed cavity; a transparent hydrophilic fluid and an opaque hydrophobic fluid, filled in the closed cavity; a first electrode and a second electrode; a hydrophobic-hydrophilic switching layer, on the second electrode; and barrier walls, disposed on the hydrophobic-hydrophilic switching layer parallel to each other and spaced apart from each other, wherein at least a part of each barrier wall is transparent, and when not being powered on, a thickness of the hydrophobic fluid is not larger than a height of the barrier wall, and when being powered on, a highest place of each accumulation region of the hydrophobic fluid is not higher than a highest place of the corresponding barrier wall.
Abstract:
A liquid crystal (LCD) lens and a three-dimensional (3D) display device, which can achieve the equality of signal delay and reduce or eliminate the Moire phenomenon. The LC lens includes: a first substrate and a second substrate arranged opposite to each other, a liquid crystal layer disposed between the first substrate and the second substrate, and a plurality of parallel strip electrodes disposed on one side, close to the liquid crystal layer, of at least one of the first substrate and the second substrate. At least one strip electrode includes a plurality of strip sub-electrodes in sequential end-to-end connection. A specific included angle (α) is formed between the extension direction of each strip sub-electrode and the extension direction of the strip electrode.
Abstract:
An on-board head-up display device includes: a navigation module, an eye position detecting module, an image processing module and an image display module; the navigation module is configured to input navigation data and a spatial position coordinate of a car with respect to a position where navigation data is to be executed, to the image processing module; the eye position detecting module is configured to detect a spatial position coordinate of the left and right eyes of the driver with respect to the car; the image processing module is configured to form display information; and the image displaying module, configured to display the display information in image in front of the eyes of the driver, and the image is on a line between the eyes of the driver and the position where the navigation information to be executed.
Abstract:
A display panel, a method of manufacturing the display panel, and a display apparatus are provided in the embodiments of the present invention. The display panel comprises a first substrate assembly and a second substrate assembly, and a first polarizing filter and a second polarizing filter. The first substrate assembly and the first polarizing filter are located on a light output side. A lens grating is disposed between the first polarizing filter and the first substrate assembly of the display panel, and a substrate of the first substrate assembly serves as a substrate of the lens grating.
Abstract:
A liquid crystal lens, a fabrication method thereof and a display device are provided, the liquid crystal lens comprises: a first substrate (1); a second substrate (2), opposed to the first substrate (1); a liquid crystal layer (3), interposed between the first substrate (1) and the second substrate (2); a first transparent electrode layer (5), located on a side of the first substrate (1) close to the liquid crystal layer (3); a planarization layer (6), located on a side of the first transparent electrode layer (5) close to the liquid crystal layer (3); a first alignment layer (4), located on a side of the planarization layer (6) close to the liquid crystal layer (3); a second transparent electrode layer (7), disposed on a side of the second substrate (2) close to the liquid crystal layer; a second alignment layer (8), disposed on a side of the second transparent electrode layer (7) close to the liquid crystal layer (3). The first alignment layer (4) is moved to a position where an lateral electric field is weaker, by forming the planarization layer (6) between the first transparent electrode layer (5) and the first alignment layer (4), which thus reduces a liquid crystal phase deviation and improves a refractive effect of the liquid crystal lens.
Abstract:
The present disclosure provides a three-dimensional display device in which a pixel structure includes a plurality of sub-pixels arranged in rows and columns. In each column of sub-pixels, the sub-pixels are aligned. In each row of sub-pixels, each of the sub-pixels is staggered by half a sub-pixel with respect to an adjacent sub-pixel, and is different in color from the adjacent sub-pixel. The corresponding three-dimensional grating includes a plurality of strip-like grating structures periodically arranged in a horizontal direction, wherein the strip-like grating structures extend in the same direction that has a preset inclination angle with respect to the horizontal direction. Each strip-like grating structure corresponds to at least two sub-pixels in respective rows of sub-pixels which display different viewpoint images.
Abstract:
A liquid crystal lens and a display device are provided. The liquid crystal lens includes: a first substrate and a second substrate arranged opposite to each other; a liquid crystal layer, located between the first substrate and the second substrate; a plurality of strip-shaped first electrodes, parallel to each other and located on a side of the first substrate facing the liquid crystal layer; a first alignment layer, located on a side of the first electrodes facing the liquid crystal layer; a planar second electrode, located on a side of the second substrate facing the liquid crystal layer; and a second alignment layer, located on a side of the second electrode facing the liquid crystal layer, wherein an included angle between an extending direction of each of the first electrodes and one edge (a) of the first substrate is greater than zero, a rubbing direction of the first alignment layer and a rubbing direction of the second alignment layer are symmetric with respect to the extending direction of the first electrode, thereby ensuring that a liquid crystal lens with better symmetry can be acquired under smaller moiré pattern.
Abstract:
A display panel, a method of manufacturing the display panel, and a display apparatus are provided in the embodiments of the present invention. The display panel comprises a first substrate assembly and a second substrate assembly, and a first polarizing filter and a second polarizing filter. The first substrate assembly and the first polarizing filter are located on a light output side. A lens grating is disposed between the first polarizing filter and the first substrate assembly of the display panel, and a substrate of the first substrate assembly serves as a substrate of the lens grating.
Abstract:
A spatial light modulator and a method for displaying a computer generated hologram are disclosed. The spatial light modulator includes a plurality of MEMS units arranged in an array, each of the MEMS units corresponds to a pixel of a computer generated hologram and includes a sensing device, a light shielding portion and a driving device. The sensing device is configured for receiving position information that is obtained through Roman encoding a pixel corresponding to an MEMS unit including the sensing device and the position information is transmitted to the driving device by the sensing device. The driving device is configured for controlling the light shielding portion to move to a position corresponding to the position information in response to the received position information of the light shielding portion when the present frame is displayed.