Abstract:
Methods and apparatus for adaptively adjusting temporal parameters (e.g., neighbor cell search durations). In one embodiment, neighbor cell search durations during discontinuous reception are based on a physical channel metric indicating signal strength and quality (e.g. Reference Signal Received Power (RSRP), Received Signal Strength Indication (RSSI), Reference Signal Receive Quality (RSRQ), etc.) of a cell. In a second embodiment, neighbor cell search durations are based on a multitude of physical layer metrics from one or more cells. In one variant, the multitude of physical layer metrics may include signal strength and quality metrics from the serving base station as well as signal strength and quality indicators from neighbor cells derived from the cells respective synchronization sequences.
Abstract:
A station configured to perform a method for determining a wireless property such as a channel estimate, a channel estimation track, a time tracking loop, and a frequency tracking loop. The method includes determining a set of consecutive subframes in which no transmission is scheduled, placing a processor into a first power mode during at least a portion of the set of consecutive subframes, placing the processor into a second power mode during at least another portion of the set of consecutive subframes, receiving a first reference symbol when the processor is in the second power mode and calculating a wireless property based on the first reference symbol.
Abstract:
Aspects of the present invention provide apparatuses and methods for adaptive channel state feedback (CSF) estimation techniques. Downlink transmissions can be received at a mobile device. The downlink transmissions can be received after the mobile device has entered a power saving mode of operation. The downlink transmission received can be a discontinuous downlink subframe and can include one or more pilot symbols. A channel variation factor of the transmission channel can be determined based on the received downlink transmission. Based on the amount of variation of the transmission channel, either an earlier-received or a later-received pilot symbol can be used for CSF estimation. Further, either higher or lower weighted filter coefficients can be selected for use in CSF estimation based on the amount of variation of the transmission channel.
Abstract:
Methods and apparatus for adaptively adjusting temporal parameters (e.g., neighbor cell search durations). In one embodiment, neighbor cell search durations during discontinuous reception are based on a physical channel metric indicating signal strength and quality (e.g. Reference Signal Received Power (RSRP), Received Signal Strength Indication (RSSI), Reference Signal Receive Quality (RSRQ), etc.) of a cell. In a second embodiment, neighbor cell search durations are based on a multitude of physical layer metrics from one or more cells. In one variant, the multitude of physical layer metrics may include signal strength and quality metrics from the serving base station as well as signal strength and quality indicators from neighbor cells derived from the cells respective synchronization sequences.
Abstract:
Aspects of the present invention provide apparatuses and methods for adaptive channel state feedback (CSF) estimation techniques. Downlink transmissions can be received at a mobile device. The downlink transmissions can be received after the mobile device has entered a power saving mode of operation. The downlink transmission received can be a discontinuous downlink subframe and can include one or more pilot symbols. A channel variation factor of the transmission channel can be determined based on the received downlink transmission. Based on the amount of variation of the transmission channel, either an earlier-received or a later-received pilot symbol can be used for CSF estimation. Further, either higher or lower weighted filter coefficients can be selected for use in CSF estimation based on the amount of variation of the transmission channel.
Abstract:
A station that performs a method to coordinate transmissions of scheduling requests (SR) with OnDurations of a connected discontinuous reception (C-DRX) cycle. The station receives a packet at a packet arrival time relative to a schedule indicating the SR opportunities and onDurations, the SR opportunities occurring at a first interval, the onDurations occurring at a second interval, the first interval being less than the second interval. The station determines an SR opportunity subsequent to the packet arrival time that precedes an entirety of a subsequent onDuration, such that a transmission duration to transmit the SR and the packet maximally overlaps with the selected onDuration. A sleep mode of the processor of the station is used until a time associated with the selected SR opportunity. An active mode of the processor is used to transmit the SR and receive control channel information during the onDuration.
Abstract:
Methods and apparatus for resuming radio channel measurements and estimations after an interruption in reception. In one exemplary embodiment of the present disclosure, an adaptive solution is provided for channel estimation based at least in part on the reception interruption duration. In one variant, an LTE UE determines a windowing length and/or “shape” for a time domain channel estimation algorithm based on at least the interruption duration. In an alternate variant, an LTE UE determines the interpolation coefficients for a filter based on the interruption duration.
Abstract:
Methods and apparatus for adaptively adjusting temporal parameters (e.g., neighbor cell search durations). In one embodiment, neighbor cell search durations during discontinuous reception are based on a physical channel metric indicating signal strength and quality (e.g. Reference Signal Received Power (RSRP), Received Signal Strength Indication (RSSI), Reference Signal Receive Quality (RSRQ), etc.) of a cell. In a second embodiment, neighbor cell search durations are based on a multitude of physical layer metrics from one or more cells. In one variant, the multitude of physical layer metrics may include signal strength and quality metrics from the serving base station as well as signal strength and quality indicators from neighbor cells derived from the cells respective synchronization sequences.
Abstract:
Methods and apparatus for managing radio measurements during discontinuous reception. In one exemplary embodiment, the distribution of Long Term Evolution (LTE) DRX measurements is staggered or distributed across multiple DRX cycles (which may be contiguous or non-contiguous) so as to reduce the transceiver activity and power consumption. The exemplary UE in one implementation only performs a subset of measurements during each DRX cycle. By staggering or distributing cell measurements over multiple DRX cycles, the UE can improve power consumption, while still conforming to measurement requirements.
Abstract:
Methods and apparatus for adaptively adjusting temporal parameters (e.g., neighbor cell search durations). In one embodiment, neighbor cell search durations during discontinuous reception are based on a physical channel metric indicating signal strength and quality (e.g. Reference Signal Received Power (RSRP), Received Signal Strength Indication (RSSI), Reference Signal Receive Quality (RSRQ), etc.) of a cell. In a second embodiment, neighbor cell search durations are based on a multitude of physical layer metrics from one or more cells. In one variant, the multitude of physical layer metrics may include signal strength and quality metrics from the serving base station as well as signal strength and quality indicators from neighbor cells derived from the cells respective synchronization sequences.