Abstract:
Various implementations disclosed herein include devices, systems, and methods that adjust a focus of a camera based on a distance associated with a determined user attention. For example, an example process may include obtaining sensor data from one or more sensors in a physical environment. The process may include determining at least one gaze direction of at least one eye based on the sensor data. The process may further include determining a distance associated with user attention based on a convergence determined based on an intersection of gaze directions of the at least one gaze direction, or a distance of an object in a 3D representation of the physical environment based on the at least one gaze direction. The process may further include adjusting a focus of a camera of the one or more sensors based on the distance associated with the user attention.
Abstract:
A camera includes a pulse transmitter for transmitting at a transmit time through an aperture and along an optical path to a target a coherent electromagnetic ranging pulse at a first wavelength range outside the visible spectrum. In some embodiments, the camera includes a reflected pulse detector for receiving a reflected electromagnetic pulse reflected by the target back along the optical path and through the aperture at a detect time subsequent to the transmit time. In some embodiments, the camera includes a shutter positioned for shielding the pulse detector from at least transmit time to an intermediate time between the transmit time and the detect time. In some embodiments, the shutter includes a layer of semiconductor material placed in the optical path at a point between the target and the detector.
Abstract:
A driver circuit for electro-active polymer (EAP) device has a shared, voltage boost circuit that is coupled to drive a common terminal of first and second EAP devices to a given voltage. A first voltage boost circuit is coupled to drive a respective terminal of the first EAP device to an opposite polarity voltage, while a second voltage boost circuit is coupled to drive a respective terminal of the second EAP device to an opposite polarity voltage. Other embodiments are also described and claimed.
Abstract:
A method for detecting wind using a microphone and a speaker of an electronic device. The method obtains a microphone signal produced by the microphone. The method obtains a speaker input signal produced by the speaker that is emulating a microphone capturing ambient sound in an environment through the speaker. The method determines a coherence between the microphone signal and the speaker input signal and determines whether the coherence is below a coherence intensity threshold. In response to determining that the coherence is below the coherence intensity threshold, the method determines a presence of wind in the environment.
Abstract:
An artificial muscle structure has an electro-active polymer (EAP) layer having a frusto-conical shape and whose tip has an opening formed therein for use as a camera variable aperture. First, second and third electrode segments are formed on a rear face of the EAP layer. The second segment is positioned in a gap between the first and third segments so as to be electrically isolated from the first and third segments. The second segment has an opening formed therein that is aligned with the opening in the EAP layer. A complementary electrode is formed on a front face of the EAP layer. Other embodiments are also described.
Abstract:
An image sensor assembly includes an image sensor die attached adjacent to a cavity and a lower surface in a preformed package having substantially vertical surfaces extending from the lower surface to an upper surface of the package. The image sensor die provides the light receiving surface for capturing the image. A light absorbing layer is applied to a cover such that the light absorbing layer prevents light from falling on the substantially vertical surfaces of the preformed package without preventing the passage of light that falls on the light receiving surface of the image sensor die. The light absorbing layer includes openings that provide a line-of-sight view of two opposing corners of at least one of the light receiving surface and the image sensor die to facilitate placing the cover over the upper surface of the package in registry with the image sensor die.
Abstract:
Various embodiments include a position sensor configuration that compensates for a bias field offset. The position sensor configuration may be used for position sensing of components, such as camera components, that are movable via an actuator (e.g., a voice coil motor actuator). In some embodiments, the actuator may include an asymmetric magnet arrangement that produces an asymmetric magnetic field. The asymmetric magnetic field may include one or more bias field components that are offset relative to one or more axes. In some examples, the position sensor configuration may include one or more magnetic field sensor packages. Individual ones of the magnetic field sensor packages may include a magnetic field sensor and one or more compensation magnets. The compensation magnets may be configured to contribute to one or more compensation magnetic fields that counteract the bias field components such that the compensation magnetic fields compensate for the bias field offset.
Abstract:
A sequence of digital images are produced using an imaging sensor circuit, wherein each of the digital images was a result of light capture by the imaging sensor circuit during a respective pixel integration phase followed by analog to digital conversion during a respective readout phase. A camera actuator is driven while producing the sequence of images, wherein during a part of every respective readout phase for the sequence of digital images the actuator is driven using a linear drive circuit, and wherein during a part of every respective pixel integration phase the actuator is driven using a switch mode drive circuit. Other embodiments are also described and claimed.
Abstract:
Some embodiments include an optics assembly. In some embodiments, the optics assembly includes an optics component. In some embodiments, the optics assembly is configured to move within the apparatus on one or more axes orthogonal to an optical axis of the optics component. In some embodiments, the optics assembly is suspended by a plurality of wires on a base component of the apparatus, each wire of the plurality of wires being substantially parallel to the optical axis of the optics component. Some embodiments include a base assembly component or substrate having an upper surface plane and a lower surface plane. In some embodiments, one or more terminations are disposed around the plurality of wires. In some embodiments, the terminations are located beyond the upper surface plane of the base assembly component.
Abstract:
A camera includes a pulse transmitter for transmitting at a transmit time through an aperture and along an optical path to a target a coherent electromagnetic ranging pulse at a first wavelength range outside the visible spectrum. In some embodiments, the camera includes a reflected pulse detector for receiving a reflected electromagnetic pulse reflected by the target back along the optical path and through the aperture at a detect time subsequent to the transmit time. In some embodiments, the camera includes a shutter positioned for shielding the pulse detector from at least transmit time to an intermediate time between the transmit time and the detect time. In some embodiments, the shutter includes a layer of semiconductor material placed in the optical path at a point between the target and the detector.