Abstract:
The disclosure is directed to Zr and Hf bearing alloys that are capable of forming a metallic glass, and more particularly metallic glass rods with diameters at least 1 mm and as large as 5 mm or larger. The disclosure is further directed to Zr and Hf bearing alloys that demonstrate a favorable combination of glass forming ability, strength, toughness, bending ductility, and/or corrosion resistance.
Abstract:
Described herein are methods of constructing a part using metallic glass alloys, layer by layer, as well as metallic glass-forming materials designed for use therewith. Metallic glass meshes, metallic glass actuators, three dimensional metallic glass thermal history sensors, and methods of their manufacture are also disclosed.
Abstract:
Described herein are methods of constructing a part having improved properties using metallic glass alloys, layer by layer. In accordance with certain aspects, a layer of metallic glass-forming powder is deposited to selected positions and then fused to a surface layer (i.e. layer below) by suitable methods such as laser heating or electron beam heating. The deposition and fusing are then repeated as need to construct the part, layer by layer. In certain embodiments, one or more sections or layers of non-metallic glass-forming material can be included as needed to form a composite final part. In certain aspects, the metallic glass-forming powder may be crystalized during depositing and fusing, or may be recrystallized during subsequent processing to provide selectively crystalized sections or layers, e.g., to impart desired functionality. In other aspects, non-metallic glass-forming materials may be deposited and fused at selected positions, e.g., to provide selective shear banding to impart improved ductile properties and plasticity. In yet other aspects, the metallic glass-forming powder or metallic glass material and non-metallic glass-forming material are deposited and fused to form a foam-like, bellow or similar structure, which is able to crumple under high stress to absorb energy under impact.
Abstract:
Described herein is a method of forming a 3D investment mold using a layer-by-layer construction (3D printing). The mold is configured for receipt of a molten alloy having a composition configured to form a bulk metallic glass (BMG) on cooling. The mold has a hollow interior between inner and outer walls. The hollow interior receives the molten alloy for molding it between the inner and outer walls of the mold. A method of casting using the 3D investment mold is also disclosed, which may include filling the mold with molten alloy, removing bubbles, quenching the molten alloy in the mold, and then removing the mold.
Abstract:
The disclosure is directed to Zr and Hf bearing alloys that are capable of forming a metallic glass, and more particularly metallic glass rods with diameters at least 1 mm and as large as 5 mm or larger. The disclosure is further directed to Zr and Hf bearing alloys that demonstrate a favorable combination of glass forming ability, strength, toughness, bending ductility, and/or corrosion resistance.
Abstract:
Described herein are methods of constructing a part using metallic glass alloys, layer by layer, as well as metallic glass-forming materials designed for use therewith. Metallic glass meshes, metallic glass actuators, three dimensional metallic glass thermal history sensors, and methods of their manufacture are also disclosed.
Abstract:
A mold apparatus to form a ceramic (or glass) includes a first mold portion having a first coefficient of thermal expansion and a second mold portion having a second coefficient of thermal expansion. In some embodiments, the first mold portion and/or the second mold portion are substantially immiscible with the ceramic material, such as silicon oxide, at a temperature greater than 600° C. In some embodiments, the first coefficient of thermal expansion and the second coefficient of thermal expansion are substantially similar to that of the glass or ceramic material. In some embodiments, the first coefficient of thermal expansion is different from the second coefficient of thermal expansion. In some embodiments, the first mold portion and the second mold portion contain a surface coating and a passivation layer.
Abstract:
A metallic glass part is provided. The metallic glass part includes an alloy core and a metallic glass shell surrounding the alloy core. The alloy core provides compressive force on the metallic glass shell at an interface between the alloy core and the metallic glass shell.
Abstract:
Described herein are methods of constructing a part using metallic glass-forming alloys, layer by layer, as well as bulk metallic glass-forming materials designed for use therewith. In certain embodiments, a layer of metallic glass-forming alloy powder, wire, or a sheet of metallic glass material is deposited to selected positions and then fused to a layer below by suitable methods such as laser heating or electron beam heating. The deposition and fusing are then repeated as need to construct the part, layer by layer. One or more sections or layers of material that is not a metallic glass can be included as needed to form composite parts.
Abstract:
Described herein are methods of constructing a three-dimensional part using metallic glass alloys, layer by layer, as well as metallic glass-forming materials designed for use therewith. In certain embodiments, a layer of metallic glass-forming powder or a sheet of metallic glass material is deposited to selected positions and then fused to a layer below by suitable methods such as laser heating or electron beam heating. The deposition and fusing are then repeated as need to construct the part, layer by layer. One or more sections or layers of non-metallic glass material can be included as needed to form composite parts. In one embodiment, the metallic glass-forming powder is a homogenous atomized powder. In another embodiment, the metallic glass-forming powder is formed by melting a metallic glass alloy to an over-heat threshold temperature substantially above the Tliquidus of the alloy, and quenching the melt at a high cooling rate such that the cooling material is kept substantially amorphous during cooling to form the metallic glass. In various embodiments, the melt is atomized during cooling to form the metallic glass-forming powder.