Abstract:
In order to reduce the power consumption of a receiving electronic device, received advertising beacons may be filtered so that the receiving electronic device selectively transitions from a power-saving mode to a normal operating mode. For example, the receiving electronic device may receive a beacon with advertising information for a transmitting electronic device. If the advertising information is changed relative to a previous version of the advertising information for the transmitting electronic device, the receiving electronic device may transition from the power-saving mode to the normal operating mode. In this way, the receiving electronic device may ‘wake up’ if it receives an advertisement that it wants to act on, such as advertisements for: file sharing, wireless streaming of information, proximity pairing and/or continuity of a user experience with an application when the user transitions from the transmitting electronic device to the receiving electronic device.
Abstract:
An interface circuit in a computing device may communicate with user-interface devices using shared slots during time intervals. In particular, the computing device may transmit outgoing messages to the user-interface devices at a first predefined time during sequential time intervals when the user-interface devices transition from a sleep mode to a normal mode. In response, the computing device may receive incoming messages from one or more of the user-interface devices at a second predefined time following the first predefined time during the sequential time intervals. Then, the computing device may transmit a multicast message to the user-interface devices at a third predefined time during the sequential time intervals. In response to the given multicast message, one of the user-interface devices may communicate data to the computing device. Note that, in some instances, a multicast time slot may instead be used to communicate data to one of the user-interface devices.
Abstract:
Controllers can communicate with accessories using various paths, such as a wireless communication path. A controller can maintain reachability information for each accessory indicating the path(s) via which the accessory is currently reachable. Maintaining the reachability information can include scanning to detect broadcasts from the accessories and updating the reachability information based on the results of scanning. Scanning parameters such as scan interval and scan duration can be selected dynamically based on the current operating context of the controller (e.g., where the controller is located, what processes are active on the controller, what other devices have been detected within communication range of the controller).
Abstract:
In some embodiments, one or more wireless stations operate to configure direct communication with neighboring wireless stations, e.g., direct communication between the wireless stations without utilizing an intermediate access point. Embodiments of the disclosure relate to a mechanism for a device to transmit, via a BTLE (or Bluetooth) interface, a first message indicating an operation associated with a Wi-Fi service (e.g., a service available via a Wi-Fi interface and/or Wi-Fi related interface parameters) to a peer device. The first message may include a service hash that indicates the operation. The service hash may be included in a first data structure. The first data structure may indicate availability of the Wi-Fi service. The device may receive a second message from the peer device indicating that the neighboring wireless station intends to subscribe to or provide the Wi-Fi service, e.g., via Wi-Fi peer-to-peer communications.
Abstract:
Controllers can communicate with accessories using various paths, such as a wireless communication path. A controller can maintain reachability information for each accessory indicating the path(s) via which the accessory is currently reachable. Maintaining the reachability information can include scanning to detect broadcasts from the accessories and updating the reachability information based on the results of scanning. Scanning parameters such as scan interval and scan duration can be selected dynamically based on the current operating context of the controller (e.g., where the controller is located, what processes are active on the controller, what other devices have been detected within communication range of the controller).
Abstract:
Controllers can communicate with accessories using various paths, such as a wireless communication path. A controller can maintain reachability information for each accessory indicating the path(s) via which the accessory is currently reachable. Maintaining the reachability information can include scanning to detect broadcasts from the accessories and updating the reachability information based on the results of scanning. Scanning parameters such as scan interval and scan duration can be selected dynamically based on the current operating context of the controller (e.g., where the controller is located, what processes are active on the controller, what other devices have been detected within communication range of the controller).
Abstract:
In order to reduce the power consumption of a receiving electronic device, received advertising beacons may be filtered so that the receiving electronic device selectively transitions from a power-saving mode to a normal operating mode. For example, the receiving electronic device may receive a beacon with advertising information for a transmitting electronic device. If the advertising information is changed relative to a previous version of the advertising information for the transmitting electronic device, the receiving electronic device may transition from the power-saving mode to the normal operating mode. In this way, the receiving electronic device may ‘wake up’ if it receives an advertisement that it wants to act on, such as advertisements for: file sharing, wireless streaming of information, proximity pairing and/or continuity of a user experience with an application when the user transitions from the transmitting electronic device to the receiving electronic device.
Abstract:
A device implementing dynamic controller selection may include a processor configured to generate a connectivity graph based on a scan for accessory devices, the connectivity graph including a connectivity metric value for a discovered accessory device. The processor may be configured to broadcast the connectivity graph and receive another connectivity graph broadcasted by another electronic device that includes another connectivity metric value for the accessory device. The processor may be configured to receive a request to provide an instruction to the accessory device and determine which of the electronic devices will provide the instruction based on the connectivity metric values. The processor may be further configured to, when the electronic device is determined, provide the instruction for transmission to the accessory device, and when the other electronic device is determined, provide, for transmission to the other electronic device, the instruction to be provided to the accessory device.
Abstract:
In order to reduce the power consumption of a receiving electronic device, received advertising beacons may be filtered so that the receiving electronic device selectively transitions from a power-saving mode to a normal operating mode. For example, the receiving electronic device may receive a beacon with advertising information for a transmitting electronic device. If the advertising information is changed relative to a previous version of the advertising information for the transmitting electronic device, the receiving electronic device may transition from the power-saving mode to the normal operating mode. In this way, the receiving electronic device may ‘wake up’ if it receives an advertisement that it wants to act on, such as advertisements for: file sharing, wireless streaming of information, proximity pairing and/or continuity of a user experience with an application when the user transitions from the transmitting electronic device to the receiving electronic device.
Abstract:
Systems, methods, and computer-readable media for providing a recommendation of a payment credential to be used by an electronic device in a commercial transaction based on merchant information received by the electronic device are provided. In one example embodiment, a method, at an electronic device that includes a secure element that includes at least one payment credential, includes, inter alia, accessing credential availability data indicative of the at least one payment credential, accessing merchant context data associated with a merchant subsystem, wherein the merchant context data is indicative of a preference for a first type of payment credential over a second type of payment credential, and presenting payment recommendation data based on the accessed credential availability data and the accessed merchant context data. Additional embodiments are also provided.