摘要:
A catalyst for electrodes in solid-polymer fuel cells which comprises metal oxide particles themselves. The catalyst contains fine transition-metal oxide particles having, in the main phase, a perovskite structure represented by the general formula ABO3 (wherein A represents one or more elements selected among lanthanum, strontium, cerium, calcium, yttrium, erbium, praseodymium, neodymium, samarium, europium, silicon, magnesium, barium, niobium, lead, bismuth, and antimony; and B represents one or more elements selected among iron, cobalt, manganese, copper, titanium, chromium, nickel, and molybdenum), the fine oxide particles having lattice constants satisfying the following relationship (1): 1.402
摘要:
The zirconium oxide hydrate particles of the present invention are represented by the formula ZrO2.nH2O and have a mean primary particle size of 0.5 nm or more and 5 nm or less, and “n” in the formula represents a number greater than 2.5. Moreover, the method for producing of zirconium oxide hydrate particles of the present invention includes the step of preparing zirconium oxide hydrate particles by adding an aqueous zirconium salt solution to an aqueous alkaline solution while controlling the pH to 7.0 or more and 13.0 or less, and the step of subjecting the zirconium oxide hydrate particles to a hydrothermal treatment in the presence of water at a temperature of 50° C. or more and less than 110° C. for 3 hours or more.
摘要:
The zirconium oxide hydrate particles of the present invention are represented by the formula ZrO2.nH2O and have a mean primary particle size of 0.5 nm or more and 5 nm or less, and “n” in the formula represents a number greater than 2.5. Moreover, the method for producing of zirconium oxide hydrate particles of the present invention includes the step of preparing zirconium oxide hydrate particles by adding an aqueous zirconium salt solution to an aqueous alkaline solution while controlling the pH to 7.0 or more and 13.0 or less, and the step of subjecting the zirconium oxide hydrate particles to a hydrothermal treatment in the presence of water at a temperature of 50° C. or more and less than 110° C. for 3 hours or more.
摘要:
An aqueous solution of a metal salt to an alkaline aqueous solution to forma hydroxide or a hydrate of a metal, and the hydroxide or hydrate of the metal is heated at a temperature of 110 to 300° C. in the presence of water. Then, the hydroxide or hydrate of the metal is filtered and dried and then further heated at a temperature of 300 to 1200° C. in an air to form oxide particles such as the particles of cerium oxide, zirconium oxide, aluminum oxide silicon oxide, iron oxide, etc. Thereby the particles of cerium oxide, zirconium oxide, aluminum oxide silicon oxide, iron oxide, etc. having a plate-form shape and a particle size of from 10 nm to 100 nm in the plate direction of the particle are obtained. The non-magnetic particles, in particular, plate-form oxide particles of the present invention have a uniform particle size distribution, are less sintered or agglomerated, and have good crystallinity.
摘要:
Carbon particles having fine particles deposited thereon which can be used as a substitute for the carbon particles having platinum deposited thereon and metallic platinum particles which are presently in general use as, e.g., a catalyst for electrodes in fuel cells. Compared to the conventional carbon particles having platinum deposited thereon, etc., the carbon particles are effective in greatly reducing the amount of platinum to be used. The carbon particles are characterized by comprising carbon particles and, deposited on the surface of the carbon particles, fine particles of a perovskite type composite metal oxide in each of which fine noble-metal particles are present throughout the whole particle. Also provided is a process for producing the carbon particles.The carbon particles having deposited fine particles have a constitution in which fine particles of a perovskite type composite metal oxide each having fine noble-metal particles present throughout the whole perovskite type oxide particle and having a crystallite size of 1-20 nm are deposited on carbon particles. The process for producing such carbon particles having fine particles deposited thereon comprises preparing a solution containing fine perovskite type composite oxide particles and complex ions of a metal for constituting fine noble-metal particles, subsequently repeating the step of impregnating the solution into carbon particles and dried the particles to thereby adsorb complex ions of the metal onto the carbon particles, and then subjecting the resultant particles to heat treatment.
摘要:
There are provided carbon particles supporting thereon fine particles of a perovskite type composite oxide, which can be used as a substitute for the existing platinum-supporting carbon particles or platinum metal particles commonly used in electrocatalysts for fuel cells, and which are significantly reduced in the amount of platinum to be used in comparison with the existing platinum-supporting carbon particles, and a process for manufacturing the same carbon particles.The fine particles of a perovskite type composite metal oxide which contains a noble metal element in its crystal lattice and has an average crystallite size of from 1 to 20 nm are supported on carbon particles. To manufacture such fine particle-supporting carbon particles, a solution containing complex ions of a metal which constitutes the fine perovskite type composite oxide particle is firstly prepared; then, carbon particles are dispersed in the resulting solution to adsorb the complex ions of the metal onto the carbon particles; and the resulting dispersion is subjected to a heat treatment.
摘要:
An aqueous alkaline solution containing a tin salt dissolved therein is mixed with a zinc compound, and an aqueous solution of an indium salt is added to the mixture. The resultant hydroxide or hydrate containing tin, indium and zinc is treated by heating at a temperature of 110 to 300° C. in the present of water. Then, the resultant product is filtered, dried and treated by heating at a temperature of 300 to 1,000° C. in an air and further reduced at a temperature of 150 to 400° C. under a reducing atmosphere to obtain composite indium oxide particles of zinc oxide and tin-containing indium oxide, which have an average particle size of 5 to 100 nm. The resultant composite particles of zinc oxide and tin-containing indium oxide are suitably used to form a transparent conductive coating film having a UV-shielding effect.
摘要:
An aqueous solution of a tin salt and an indium salt is added to an aqueous alkaline solution to form a hydroxide or a hydrate comprising tin and indium, the hydroxide or hydrate is heated at a temperature of 110 to 300° C. in the presence of water, filtered and dried, and then the hydroxide or hydrate is heated at a temperature of 200 to 1000° C. to form the tin-containing indium oxide particles. Thereby, tin-containing indium oxide particles which have a plate-form shape and an average particle size in the plane direction of 10 to 200 nm are obtained. The tin-containing indium oxide particles are suitable for forming an electrically conductive transparent coating film.
摘要:
The electrode for a lithium ion secondary battery of the present invention has an electrode mixture layer containing carbon nanotubes as a conductive auxiliary agent and deoxyribonucleic acid as a dispersant for the carbon nanotubes, and the content of the carbon nanotubes in the electrode mixture layer is 0.001 to 5 parts by mass with respect to 100 parts by mass of active material particles. The lithium ion secondary battery of the present invention has the electrode of the invention as its positive electrode and/or negative electrode. The electrode of the invention can be produced by a producing method of the invention of forming the electrode mixture layer from an electrode mixture-containing composition prepared using a dispersion including carbon nanotubes and deoxyribonucleic acid.
摘要:
An electrode for a lithium ion secondary battery of the present invention includes an electrode material mixture layer containing oxide particles, active material particles capable of absorbing and desorbing Li, and a resin binder, wherein the oxide particles have an average particle size of primary particles of 1 to 20 nm, and have no peak or have a width at half height of the highest intensity peak of 1.0° or more within the range of 2θ=20 to 70° in a powder X-ray diffraction spectrum, and the ratio of the oxide particles is 0.1 to 10 mass % when the total of the active material particles and the oxide particles is taken as 100 mass %. Further, a lithium ion secondary battery of the present invention includes the above-described electrode for a lithium ion secondary battery of the present invention.