Abstract:
A magnetoresistive device includes a free layer, a separating layer, a pinned layer, and a magnetic stabilizer in close proximity to the pinned layer, wherein the magnetic stabilizer may enhance the stability of the magnetization direction of the pinned layer.
Abstract:
A wireless communication system comprises a first communication module including a transmitter configured to generate a modulated magnetic field and a second communication module including a receiver. The receiver of the second communication module includes a solid magnetic field sensor configured to sense the magnetic field. Information is transferred from the first communication module to the second communication module via the magnetic field.
Abstract:
A micro-electromechanical systems (MEMS) disc drive includes high-precision and integrated components to allow for increased functionality, robustness and reduced size as compared to currently produced disc drives. Integrating multiple subcomponents of the disc drive using batch processing provides low manufacturing costs. Furthermore, using MEMS techniques, new features can be added to disc drives. For example, an environmental control component, an accelerometer and/or a thermometer may be integrated into the housing of the disc drive.
Abstract:
The present invention is a magnetoresistive (MR) sensor (100) that combines the advantages of abutted junction structure and regular overlaid structure. The abutted junction design is used with the soft adjacent layer (SAL) (108) and the overlaid structure is used with the MR element (120). The method of making the MR sensor (100) comprises depositing SAL (108) on top of the gap layer (106) and depositing spacer material (110) on top of the SAL (108). A mask (130) is placed over the central region of the spacer material (110) and SAL (108). The spacer material (110) and SAL (108) are removed in the areas not covered by the mask (130). An underlayer material (112) is deposited in the areas where the SAL (108) and spacer material (110) were removed. A hard-biasing material (114) is deposited on top of the underlayer (112). The mask (130) is removed and the MR element (120) is deposited on top of the spacer material (110) in the active region of the sensor (132) and on top of the hard-biasing material (114) in the passive regions of the sensor (134, 136). A cap layer (122) is deposited on top of the MR element (120) in the active (132) and passive regions (134, 136) of the MR sensor (100). Contacts (124) are placed on top of the cap layer (122) in the passive regions of the sensor (134, 136). In another embodiment of the method, additional material is added to separate the hard-biasing material (114), thus improving the signal to noise ratio. A low resistivity material (116) is added after the first hard-biasing material (114) and a second hard-biasing material (118) is deposited on top of the low-resistivity material (116). The additional materials are deposited before the mask (130) is removed. Once the mask (130) is removed, the MR senor (100) is built in accordance with the first embodiment.
Abstract:
A recording head for use with a storage medium is provided. The recording head includes a substrate, a magnetic pole, a first magnetic bias structure positioned on a first side of the magnetic pole, and a second magnetic bias structure positioned on a second side of the magnetic pole, Spacer material is positioned between the magnetic pole and the first magnetic bias structure and between the magnetic pole and the second magnetic bias structure.
Abstract:
A magneto-resistive sensor has a magneto-resistive element with an active area with an electrical resistance sensitive to changes in magnetic flux. Two hard magnets on opposing sides of the magneto-resistive element magnetically bias the magneto-resistive element. Each hard magnet includes a seed layer of a soft magnetic, electrically conductive material between two magnet layers of a hard magnetic, electrically conductive material laminated longitudinally together such that the seed layer and the magnet layers exhibit unified magnetic properties. The seed layer is preferably an amorphous material such as nitrided sendust. The laminated structure allows for a thicker magnet structure with low electrical resistance but without degradation of magnetic properties due to the increased thickness.
Abstract:
The present invention is a magnetoresistive (MR) sensor that combines a hard-biasing material with an underlayer of cubic-titanium-tungsten to improve the stability of the MR sensor. The permanency of the hard-biasing material affects both the transverse and longitudinal biasing of the MR sensor, which in turn affects the stability of the MR sensor. The stability of the hard-biasing material is improved by combining it with an underlayer of cubic-titanium-tungsten. The underlayer enhances the hard-biasing material by improving the longitudinal magnetic anisotropy, the coercivity, and the in-plane squareness of the hard-biasing material. The combination of hard-biasing material and cubic-titanium-tungsten underlayer can be used in a variety of MR sensor embodiments, specifically an abutted junction or an overlaid structure. The method of making the abutted junction or overlaid structures is also improved by using cubic-titanium-tungsten as the underlayer of the hard-biasing material. The cubic-titanium-tungsten underlayer can be deposited at temperatures which are normal for the manufacturing of MR sensors, thus extra process steps are not needed. In addition, the process is more consistent and reliable.
Abstract:
An improved magnetoresistive read sensor (100) and a method of fabricating magnetoresistive read sensor (100) that eliminates film removal is disclosed. The magnetoresistive sensor (100) is formed by positioning a first mask (128) on a gap layer (104) split into three regions due to subsequent layers. A first mask (128) is positioned on the central region of the gap layer (104) and a first hard-biasing material (106) is deposited onto the outside regions of the gap layer (104). The first mask (128) is removed and a magnetoresistive element (116) is deposited onto the outside regions of the first hard-biasing material (106) and the central region of gap layer (104), thereby forming an active region (122), a first passive region (124) and a second passive region (126) of the magnetoresistive sensor (100). A spacer layer (118) is deposited onto the magnetoresistive element (116) in all three regions and a soft adjacent layer (120) is deposited onto the spacer layer (118) in all three regions. A second mask (134) is positioned over the active region (122) of the sensor and a second hard-biasing material (110) is deposited onto the soft adjacent layer (120) in the first passive region (124) and the second passive region (126). The second mask (134) is removed and contacts (112, 114) are positioned onto the second hard-biasing material (110).
Abstract:
An improved magnetoresistive read sensor (100) and a method of fabricating magnetoresistive read sensor (100) that eliminates film removal is disclosed. The magnetoresistive sensor (100) is formed by positioning a first mask (128) on a gap layer (104) split into three regions due to subsequent layers. A first mask (128) is positioned on the central region of the gap layer (104) and a first hard-biasing material (106) is deposited onto the outside regions of the gap layer (104). The first mask (128) is removed and a magnetoresistive element (116) is deposited onto the outside regions of the first hard-biasing material (106) and the central region of gap layer (104), thereby forming an active region (122), a first passive region (124) and a second passive region (126) of the magnetoresistive sensor (100). A spacer layer (118) is deposited onto the magnetoresistive element (116) in all three regions and a soft adjacent layer (120) is deposited onto the spacer layer (118) in all three regions. A second mask (134) is positioned over the active region (122) of the sensor and a second hard-biasing material (110) is deposited onto the soft adjacent layer (120) in the first passive region (124) and the second passive region (126). The second mask (134) is removed and contacts (112, 114) are positioned onto the second hard- biasing material (110).
Abstract:
In general, the invention is directed to techniques for integrated interconnects with a set of disc drives. The interconnects allow for a set of disc drives to be positioned in an array; for example, as set of disc drives may be stacked to communicate with a device through a single interface of the device. The interconnects may be formed as vias within the housing of the disc drives. Vias may produced using MEMS techniques, e.g., electroplating, as part of the manufacturing processes of the disc drive itself.