-
公开(公告)号:CN112215704A
公开(公告)日:2021-01-12
申请号:CN202011141781.8
申请日:2020-10-22
Applicant: 重庆邮电大学 , 重庆市住房公积金管理中心
Abstract: 本发明涉及一种零存整取模式下存户存款贡献度评估方法,属于数据处理技术领域。该方法包括:通过对样本数据进行筛选以及清洗,对零存整取模式下存户存款异常数据进行过滤,得到数据集;获取用户特征数据,用户特征数据包括:存户历史缴款信息;将训练数据集输入模型进行训练分析,得到评估存户存款贡献度模型,将测试数据集用户特征数据输入至已训练的模型进行预测操作,以输出预测信息,根据预测信息生成存户存款贡献度评估信息,由此大大提高了对存户存款贡献度评估的准确度。
-
公开(公告)号:CN114678030B
公开(公告)日:2024-09-06
申请号:CN202210304443.4
申请日:2022-03-17
Applicant: 重庆邮电大学 , 重庆市住房公积金管理中心
Abstract: 本发明涉及一种基于深度残差网络和注意力机制的声纹识别方法、装置及计算机可读存储介质,属于语音识别技术领域,包括步骤:S1:对采集到的音频数据进行预处理,得到能够模拟人耳某些特性的MFCC特征;S2:构建FAM,将S1得到的特征经过帧级注意力模块对每帧的重要性进行加权运算,得到加权后的MFCC特征;S3:构建声纹识别网络并进行声纹识别;引入MobileNet的设计思想,将普通卷积替换为深度可分离卷积以降低网络参数量;在ResNet50的每一个layer后加入通道域注意力模块建模各个特征通道的重要程度,针对不同的说话人增强或抑制不同的通道,最后将特征输入网络中的分类器进行分类,实现声纹识别。
-
公开(公告)号:CN114678030A
公开(公告)日:2022-06-28
申请号:CN202210304443.4
申请日:2022-03-17
Applicant: 重庆邮电大学 , 重庆市住房公积金管理中心
Abstract: 本发明涉及一种基于深度残差网络和注意力机制的声纹识别方法、装置及计算机可读存储介质,属于语音识别技术领域,包括步骤:S1:对采集到的音频数据进行预处理,得到能够模拟人耳某些特性的MFCC特征;S2:构建FAM,将S1得到的特征经过帧级注意力模块对每帧的重要性进行加权运算,得到加权后的MFCC特征;S3:构建声纹识别网络并进行声纹识别;引入MobileNet的设计思想,将普通卷积替换为深度可分离卷积以降低网络参数量;在ResNet50的每一个layer后加入通道域注意力模块建模各个特征通道的重要程度,针对不同的说话人增强或抑制不同的通道,最后将特征输入网络中的分类器进行分类,实现声纹识别。
-
公开(公告)号:CN114596591A
公开(公告)日:2022-06-07
申请号:CN202210265679.1
申请日:2022-03-17
Applicant: 重庆邮电大学 , 重庆市住房公积金管理中心
IPC: G06V40/10 , G06V40/16 , G06V40/20 , G06V20/40 , G06N3/04 , G06N3/08 , G10L15/22 , G10L15/26 , G10L17/02 , G10L17/04 , G10L17/18 , G10L19/02 , G10L25/24
Abstract: 本发明涉及一种语音识别触发的服务人员手势规范识别及检测方法,属于计算机视觉技术领域。该方法包括以下步骤:S1:采集设备安装位置和安装条件的设置;S2:建立服务人员音色库和人脸库,以及说话人音色及其人脸信息的对应关系,用于识别说话人身份;S3:建立语音识别模型,用于识别说话内容,判定说话内容中是否存在关键词/句;S4:建立人脸识别模型,用于识别服务人员人体区域范围;S5:构建服务手势识别模型,用于辨识服务人员规范性。本发明通过建立语音和人体姿态间的事件链关系,从语音关联到行为姿态过程,在视频信息复杂的场景中,快速、准确地定位和识别服务人员手势规范性,以便对其进行监测上报和提示预警。
-
公开(公告)号:CN119047520A
公开(公告)日:2024-11-29
申请号:CN202411198721.8
申请日:2024-08-29
Applicant: 重庆邮电大学
IPC: G06N3/0475 , G06N3/0455 , G06N3/047 , G06N3/094 , G06N3/084 , G06N20/00 , G06F18/214
Abstract: 本发明涉及一种基于纵向联邦学习的参与方对齐样本生成系统,属于数据生成填补技术领域,包括:多方属性相关性矩阵构建模块:用于将多个参与方的样本数据集进行对齐,并计算各参与方之间每个属性的相关性,构建多方属性相关性矩阵;属性对对应关系建立模块:用于根据多方属性相关性矩阵,分别从对齐样本数据集的各方中找出具有强相关性的属性对,建立该属性对中两个属性列所有取值间的对应关系;缺失值生成模块:用于根据对应关系,建立两个属性列取值的关联规则,对参与方属性列的缺失值进行生成;生成对抗填补模块:利用参与方数据样本和生成的属性列缺失值对参与方剩余属性列的缺失值进行生成填补,获得完整的多方联合对齐样本数据集。
-
公开(公告)号:CN117110971A
公开(公告)日:2023-11-24
申请号:CN202310868442.7
申请日:2023-07-14
Applicant: 重庆邮电大学
IPC: G01R35/04 , G06N3/0442
Abstract: 本发明涉及电力系统领域,特别涉及一种基于深度学习的电表异常操作检测方法及系统,方法包括:远端服务器运行初期收集发送给集中器的控制命令,当收集的数据量达到规定则对收集的数据进行聚类;通过聚类得到多个聚类中心的信息并发送给集中器,集中器通过计算控制指令与各个聚类中心的距离判断该数据标签是否异常;集中器收集标签为异常的数据,若数据量达到第二阈值,则将收集的数据作为第二数据集,利用该数据集对GRU模型进行训练,并将完成训练的模型参数发送给集中器;集中器根据收到的模型参数更新本地模型,并根据更新后的模型对收到的控制命令进行检测;本发明可以有效检测新型攻击或恶意篡改等异常操作。
-
公开(公告)号:CN116612768A
公开(公告)日:2023-08-18
申请号:CN202310450468.X
申请日:2023-04-24
Applicant: 重庆邮电大学
Abstract: 本发明涉及一种用于电表安装的语音辅助系统及方法,包括:数据获取模块、声纹特征提取模块、语音分析模块、权限模块、命令生成模块、通讯模块、语音播报模块、存储模块;基于语音智能的辅助安装、调试电表方法和系统,建立了安装人员语音与电表之间的交互关系,使得安装人员能用语音辅助电表的安装和调试;将语音与声纹识别相结合,避免了非安装人员的语音干扰,减少了误操作的发生;将安装人员声音特征转化为声纹特征向量并存储,在进行声纹识别时直接调用,无需重复进行转化过程;本发明能够直接在便携终端和电表之间进行通讯,并能够同步电表和远程服务器二者的信息,提高安装人员的安装效率和安装人员的安全。
-
公开(公告)号:CN116227905A
公开(公告)日:2023-06-06
申请号:CN202310183123.2
申请日:2023-03-01
Applicant: 重庆邮电大学
IPC: G06Q10/0633
Abstract: 本发明涉及一种针对非自由选择结构的流程模型结构性评估方法,属于信息系统流程挖掘领域,S1:选择含有非自由选择结构的信息系统,提取系统中的事件日志数据并过滤、处理,使事件日志符合流程发现的标准,并使用流程发现算法对事件日志进行挖掘;S2:输入含有非自由选择结构的原始模型和挖掘模型,使用深度优先搜索算法遍历模型中的任务,得到原始模型和挖掘模型对应的任务对集合,并将任务对集合初始化为对应的足迹矩阵;S3:使用广度优先搜索遍历原始模型和挖掘模型,得到两个模型对应的紧邻关系集合和平行关系集合,并映射到足迹矩阵中,统计足迹矩阵中“紧邻关系”和“平行关系”的数量,代入结构性评估公式得到结构性评估值。
-
公开(公告)号:CN113239199B
公开(公告)日:2022-09-23
申请号:CN202110541128.9
申请日:2021-05-18
Applicant: 重庆邮电大学
Abstract: 本发明涉及一种基于多方数据集的信用分类方法,属于数据挖掘领域。本发明方法包括:输入信用评估相关的多方数据集;对多个数据集数据进行数据预处理,解决原始数据集中存在的多种问题,并得到标准输入数据集;利用机器学习中的聚类算法与数据生成算法,将多个数据集进行对齐,得到对齐后的新数据集;将文本类型特征与数值类型特征分别输入到两个模型中单独训练;最后结合两个模型中的训练结果,使用逻辑回归方法计算最终两个模型权重,并输出最终的评估结果。本发明通过引入数据对齐方法与信用评估算法解决多个信用数据集中样本数量无法对齐的问题,提高了可被用于训练的样本数量,减少了由于训练样本不足带来的机器学习模型分类无法收敛的问题。
-
公开(公告)号:CN109003312B
公开(公告)日:2022-01-28
申请号:CN201810973318.6
申请日:2018-08-24
Applicant: 重庆邮电大学
IPC: G06T7/80
Abstract: 本发明涉及一种基于非线性优化的相机标定方法,属于图像处理技术领域。该方法包括以下步骤:S1:获取数据:制作棋盘格标定板,并测量各方格的尺寸,从不同角度拍摄两张以上照片;S2:计算单应矩阵;S3:计算内参数、外参数和畸变因数的初始值;S4:用非线性优化方法精化计算结果。本发明在张正友标定算法的基础上,引入知识和约束条件,使得搜索范围更小,从而减小陷入局部最优的可能性,使算法更稳定;并且只需要打印一个棋盘格图形,测量其尺寸就可以标定相机,其精度明显优于比经典的张正友算法。
-
-
-
-
-
-
-
-
-