一种基于深度学习的电表异常操作检测方法及系统

    公开(公告)号:CN117110971A

    公开(公告)日:2023-11-24

    申请号:CN202310868442.7

    申请日:2023-07-14

    Abstract: 本发明涉及电力系统领域,特别涉及一种基于深度学习的电表异常操作检测方法及系统,方法包括:远端服务器运行初期收集发送给集中器的控制命令,当收集的数据量达到规定则对收集的数据进行聚类;通过聚类得到多个聚类中心的信息并发送给集中器,集中器通过计算控制指令与各个聚类中心的距离判断该数据标签是否异常;集中器收集标签为异常的数据,若数据量达到第二阈值,则将收集的数据作为第二数据集,利用该数据集对GRU模型进行训练,并将完成训练的模型参数发送给集中器;集中器根据收到的模型参数更新本地模型,并根据更新后的模型对收到的控制命令进行检测;本发明可以有效检测新型攻击或恶意篡改等异常操作。

Patent Agency Ranking