-
公开(公告)号:CN119846475A
公开(公告)日:2025-04-18
申请号:CN202510063407.7
申请日:2025-01-15
Applicant: 重庆邮电大学
IPC: G01R31/367 , G01R31/382 , G01R31/3842 , G01R31/396 , G01R31/52
Abstract: 本发明公开了基于多特征融合的电池组内短路故障检测方法和系统。该方法包括:实时间隔抽样电池组内各单体的电压数据、电流数据和探针温度数据;根据该电压数据计算得到平均最大电压差F1;根据该电压数据经过去中心化处理后,计算得到最大去中心化电压偏差F2;根据该电流数据和探针温度数据,计算加权绝对电流‑温升比率F3;将所述平均最大电压差F1、最大去中心化电压偏差F2和加权绝对电流‑温升比率F3整合为特征点,将特征点整合映射为数据点;利用DBSCAN聚类算法对各数据点进行聚类,得到各异常数据点,根据各异常数据点得到电池组内中短路的电池单体。本发明采集电池组内电压、电流、温度数据,提取三种特征来表征电池组状态,能明显提高检测准确率和检测及时性。
-
公开(公告)号:CN119337281A
公开(公告)日:2025-01-21
申请号:CN202411488872.7
申请日:2024-10-24
Applicant: 重庆邮电大学
IPC: G06F18/2433 , G06F18/10 , G06F18/23213 , G06F18/27
Abstract: 本发明提供一种基于自适应K‑means分段和边界建模的风功率异常数据识别方法,包括:根据底部堆积型异常数据的功率值小于0的特征通过规则筛选的方式识别并滤除风功率数据集中的底部堆积型异常数据;利用CH指数和k‑means算法将规则筛选后的风功率数据集自适应地划分为K个不重叠的簇;将步骤S3得到的各个簇分别按功率值划分为L个区间,并计算每个功率区间对应的风速范围数据和风速均值数据;根据每个功率区间对应的风速范围数据和风速均值数据利用峰值修正结合边界建模识别出离散型异常数据和限功率型异常数据。本发明提高了风功率异常数据的识别准确率。
-
公开(公告)号:CN119986384A
公开(公告)日:2025-05-13
申请号:CN202510080739.6
申请日:2025-01-20
Applicant: 重庆邮电大学
IPC: G01R31/367 , G01R31/392
Abstract: 本发明公开了基于局部离群因子算法的电池包异常单体检测方法和系统。该方法包括:采用滑动窗口法,抽样采集电池包中每个电池单体的电压数据和电流数据,得到单体电压矩阵;根据单体电压矩阵U,分别得到第一电压特征F1和第二电压特征F2;根据单体电压矩阵U和电池单体的电流数据,计算每个单体在滑动窗口内的电压变化一致性特征F3;将所述第一电压特征F1、第二电压特征F2、电压变化一致性特征F3整合为特征点,将特征点整合映射为数据点;采用局部离群因子LOF算法对数据点集合进行异常检测,得到异常数据点,该异常数据点为电池包中的异常电池单体。本发明可以提高电池包内异常单体的准确性,并能判断异常情况类型。
-
-