-
公开(公告)号:CN119337281A
公开(公告)日:2025-01-21
申请号:CN202411488872.7
申请日:2024-10-24
Applicant: 重庆邮电大学
IPC: G06F18/2433 , G06F18/10 , G06F18/23213 , G06F18/27
Abstract: 本发明提供一种基于自适应K‑means分段和边界建模的风功率异常数据识别方法,包括:根据底部堆积型异常数据的功率值小于0的特征通过规则筛选的方式识别并滤除风功率数据集中的底部堆积型异常数据;利用CH指数和k‑means算法将规则筛选后的风功率数据集自适应地划分为K个不重叠的簇;将步骤S3得到的各个簇分别按功率值划分为L个区间,并计算每个功率区间对应的风速范围数据和风速均值数据;根据每个功率区间对应的风速范围数据和风速均值数据利用峰值修正结合边界建模识别出离散型异常数据和限功率型异常数据。本发明提高了风功率异常数据的识别准确率。
-
公开(公告)号:CN119693712A
公开(公告)日:2025-03-25
申请号:CN202411858852.4
申请日:2024-12-17
Applicant: 重庆邮电大学
IPC: G06V10/764 , G06V10/774 , G06V10/80 , G06V10/82 , G06T3/4038 , G06T5/50 , G06N3/0464 , G06N3/08
Abstract: 本发明属于计算机视觉领域,涉及一种基于改进YOLOv8的轻量式光伏电池板缺陷检测方法,包括:获取待检测的光伏电池板缺陷图像,将图像输入到FasterNet主干网络进行多尺度特征提取;将多尺度特征输入到特征融合模块中进行融合,得到融合特征图;将融合特征图输入到目标检测模块中,得到检测结果;所述输出模块用于对检测结果进行输出;本发明通过改进YOLOv8的主干网络和特征融合模块,在计算复杂度、检测精度和实时性等方面相较现有技术具有显著优势,尤其在处理多尺度缺陷、提高精度和增强鲁棒性方面表现突出,能够有效解决现有技术中的计算复杂度高、精度不足以及多尺度缺陷处理能力差的问题。
-