-
公开(公告)号:CN114582086A
公开(公告)日:2022-06-03
申请号:CN202111511216.0
申请日:2021-12-04
Applicant: 电子科技大学长三角研究院(湖州)
Abstract: 本发明涉及智能监控安全防护技术领域,尤其涉及一种基于目标检测的行为报警系统,包括用于行为采集、数据上传的目标检测单元,与装载基于残差网络ResNet101的改进Faster RCNN模型用于检测人体行为的神经网络单元,与所述云端服务器通过无线通信连接的用于查看智能摄像头模块和接收报警通知的用户单元;本发明所提供的技术方案有效克服现有智能监控所存在的不能摆脱人力实现智能监控、不能针对多场景及时地对用户进行危险行为智能通知的缺陷。
-
公开(公告)号:CN115661805A
公开(公告)日:2023-01-31
申请号:CN202211368439.0
申请日:2022-11-03
Applicant: 电子科技大学长三角研究院(湖州)
IPC: G06V20/62 , G06N3/0464 , G06N3/08 , G06V10/25 , G06V10/44 , G06V10/774 , G06V10/82
Abstract: 本发明提供一种基于改进的Faster RCNN的车牌识别方法,包括以下步骤:步骤1:选择VGG16作为提取车牌字符特征的主干网络,将获取的图片输入特征网络,进行卷积和池化,得到共享特征特征图;步骤2:采用RPN网络检测车牌位置的候选框;步骤3:通过以Fast RCNN检测器为基础的车牌检测网络获得车牌图片,车牌检测网络的目标在于精修ROI(Region of Interests)候选框的坐标,获得车牌的最终边框;步骤4:将提取的车牌边框内的信息输入LPRNet网络模型,提取车牌信息。本发明利用Faster RCNN网络模型识别出图片中的车牌边框的位置,再通过LPRNet网络模型对车牌边框内的图像进行整体卷积形成识别序列,提取车牌信息,识别的精准度更高。
-