一种基于自适应时间戳与多尺度特征提取的轨迹预测方法

    公开(公告)号:CN112667763B

    公开(公告)日:2022-09-13

    申请号:CN202011594675.5

    申请日:2020-12-29

    Abstract: 本发明公开了一种基于自适应时间戳与多尺度特征提取的轨迹预测方法,包括以下步骤:S1:构建自适应轨迹切割时间戳;S2:根据时间戳,对用户轨迹进行切割,来拟合用户的运动模式;S3:对用户历史轨迹进行特征提取;S4:对特征向量进行归一化处理,统一多尺度特征量纲;S5:通过LSTM网络模型和分类器预测下一个POI。本发明通过结合历史轨迹数据的时间统计特性,自适应地为每一个用户定义个性化时间戳,关注不同用户运动模式之间的差异性;并结合时间序列特征提取方法多尺度对用户轨迹特征进行提取,解决了人为固定时间戳定义、轨迹特征单一性以及特征向量嵌入量纲不统一给用户轨迹预测带来的问题,提高了预测精度的效果。

    一种基于自适应时间戳与多尺度特征提取的轨迹预测方法

    公开(公告)号:CN112667763A

    公开(公告)日:2021-04-16

    申请号:CN202011594675.5

    申请日:2020-12-29

    Abstract: 本发明公开了一种基于自适应时间戳与多尺度特征提取的轨迹预测方法,包括以下步骤:S1:构建自适应轨迹切割时间戳;S2:根据时间戳,对用户轨迹进行切割,来拟合用户的运动模式;S3:对用户历史轨迹进行特征提取;S4:对特征向量进行归一化处理,统一多尺度特征量纲;S5:通过LSTM网络模型和分类器预测下一个POI。本发明通过结合历史轨迹数据的时间统计特性,自适应地为每一个用户定义个性化时间戳,关注不同用户运动模式之间的差异性;并结合时间序列特征提取方法多尺度对用户轨迹特征进行提取,解决了人为固定时间戳定义、轨迹特征单一性以及特征向量嵌入量纲不统一给用户轨迹预测带来的问题,提高了预测精度的效果。

    利用边缘计算实现独居老人智能健康监护的系统及方法

    公开(公告)号:CN115148379B

    公开(公告)日:2024-05-31

    申请号:CN202210634304.8

    申请日:2022-06-06

    Abstract: 本发明公开了一种利用边缘计算实现独居老人智能健康监护的系统,系统框架上包括用户层、展现层、云数据中心层、边缘服务器层、数据预处理层和设备感知层。本发明系统中各个部分相互配合,实现了健康监护便捷化、辅助诊断准确化、紧急通知迅速化、隐私保护全面化、辅助功能贴心化的目的,最大程度的提升了智慧医疗的效率、准确率和安全性,成为守护在独居老人或患者身边的智慧医生。将本发明系统部署到实际应用场景中,不仅能够时刻守护独居老人的身体健康,帮助老人进行疾病自检,为老人的健康与生活质量提供支持和保障,还能有效降低老人的受伤概率,降低家庭和社会负担,助力现代化国家建设。

    基于联邦学习实现医疗数据的隐私保护系统

    公开(公告)号:CN115563650A

    公开(公告)日:2023-01-03

    申请号:CN202211262070.5

    申请日:2022-10-14

    Abstract: 本发明公开了一种基于联邦学习实现医疗数据的隐私保护系,涉及医疗数据管理技术领域,包括医疗终端设备、医疗边缘服务器和医疗云中心服务器;医疗终端设备可通过变分建模对医疗数据进行预处理以实现隐私增强并得到模型训练数据;医疗边缘服务器用于将模型训练数据传入多模态模型,筛选得到生命体征区域特征,对全局医疗模型进行训练,得到局部模型,在局部模型梯度中加入本地微分扰动噪声;初始化和更新全局医疗模型。本发明为基于联邦学习的云边、智能、安全、可信的架构,能实现云边智能协同下的医疗模型训练;实现了医疗数据多模态融合的细粒度分类,提高了模型的准确率;将变分建模和差分隐私集成到系统架构中,确保医疗数据的高机密性。

    一种基于KubeEdge的轻量级边缘智能协同联邦学习平台

    公开(公告)号:CN115037618A

    公开(公告)日:2022-09-09

    申请号:CN202210634941.5

    申请日:2022-06-06

    Abstract: 本发明公开了一种基于KubeEdge的轻量级边缘智能协同联邦学习平台,包括Cloud Core云端核心模块、Edge Core边缘核心模块、云控制系统、客户端;Edge Core边缘核心模块上部署有边缘聚合中心;Cloud Core云端核心模块上部署有云聚合中心。本发明将边缘计算和联邦学习进行有效的结合,在KubeEdge平台基础上实现了高效率、高准确率、可用、可扩展的边缘智能协同联邦学习,不仅在数据应用上提供轻量级、低时延、安全可靠的平台支持,而且使联邦学习的实验环境更加仿真,实现更为精准、有效的机器学习建模,满足智能交通、智慧园区、智慧能源、智慧工厂、智慧银行、智慧工地、CDN等行业中的用户隐私保护、数据安全的需求,进而更好地为智慧城市及相关配套产业的发展提供良好的基础和保障。

    一种基于生成对抗网络的无线电数据增扩与分类方法

    公开(公告)号:CN114244456A

    公开(公告)日:2022-03-25

    申请号:CN202111589637.5

    申请日:2021-12-23

    Abstract: 本发明公开了一种基于生成对抗网络的无线电数据增扩与分类方法,利用GAN捕获样本数据分布,生成具有原始数据分布特征的高质量“伪造”数据,从而解决获取无线调制数据困难与成本较高的问题;优化了调制数据分类模型,提出了调制分类模型AMCST,提高了调制数据的分类准确率。通过在公共数据集上的实验,证明了所提出的数据增扩方法可以极大地提高调制分类模型AMCST分类准确率。在未来的工作中,本发明将研究其他深度学习模型,如变分自编码器及其变种,在调制数据增扩领域的应用。

Patent Agency Ranking