-
公开(公告)号:CN117241409B
公开(公告)日:2024-03-22
申请号:CN202311504327.8
申请日:2023-11-13
Applicant: 湖南大学
IPC: H04W74/0833 , H04W24/02 , H04W28/02
Abstract: 本发明属于无线通信技术领域,具体涉及一种基于近端策略优化的多类型终端随机接入竞争解决方法,具体包括:S1:初始化各类型终端状态与数据队列状态、小区基站状态、竞争资源数量与竞争队列状态;对各类型终端进行优先级划分,得到不同优先级的终端;获取当前环境状态;S2:在基站侧建立智能体模型,基于分布式队列机制,结合当前环境状态利用近端策略优化PPO算法的策略网络对智能体模型进行训练,获取最优选择动作、以及即时奖励,并构成经验数据存储至经验池中;S3:构建目标函数,基于经验池中所存储的经验数据对目标函数进行深度学习,利用预设阈值对参数进行训练更新,完成多类型终端随机接入的分配优化。
-
公开(公告)号:CN117241409A
公开(公告)日:2023-12-15
申请号:CN202311504327.8
申请日:2023-11-13
Applicant: 湖南大学
Abstract: 本发明属于无线通信技术领域,具体涉及一种基于近端策略优化的多类型终端随机接入竞争解决方法,具体包括:S1:初始化各类型终端状态与数据队列状态、小区基站状态、竞争资源数量与竞争队列状态;对各类型终端进行优先级划分,得到不同优先级的终端;获取当前环境状态;S2:在基站侧建立智能体模型,基于分布式队列机制,结合当前环境状态利用近端策略优化PPO算法的策略网络对智能体模型进行训练,获取最优选择动作、以及即时奖励,并构成经验数据存储至经验池中;S3:构建目标函数,基于经验池中所存储的经验数据对目标函数进行深度学习,利用预设阈值对参数进行训练更新,完成多类型终端随机接入的分配优化。
-