基于联邦学习框架的模型优化方法、系统和装置

    公开(公告)号:CN117057445A

    公开(公告)日:2023-11-14

    申请号:CN202310987628.4

    申请日:2023-08-07

    Applicant: 湖南大学

    Abstract: 本申请涉及一种基于联邦学习框架的模型优化方法、系统、装置、计算机设备、存储介质和计算机程序产品。方法包括:接收服务器发送的聚合参数,将聚合参数作为本地参数,基于本地参数和本地训练集确定第一梯度参数;基于更新的更新隐私预算值,对第一梯度参数进行裁剪和扰动,得到第二梯度参数;基于第二梯度参数更新本地参数,得到更新本地参数;将更新本地参数发送至服务器,使服务器对更新本地参数进行聚合处理,得到更新聚合参数,基于更新聚合参数对全局模型进行模型优化,接收服务器发送的更新聚合参数,重复上述步骤,直至全局模型的准确率达到要求或全局迭代次数达到预先设定的目标次数,得到优化的全局模型。本方法可提升系统资源利用率。

    一种基于多元组的Modbus TCP异常通讯检测方法和系统

    公开(公告)号:CN112968906A

    公开(公告)日:2021-06-15

    申请号:CN202110316520.3

    申请日:2021-03-25

    Abstract: 本发明公开了一种基于多元组的Modbus TCP异常通讯检测方法,包括:从工业控制网络中获取连接,每个连接包含多个Modbus TCP数据包,按照单位时间对数据包流进行分割,得到多个数据包序列。对数据包序列中的每个Modbus TCP数据包进行解析,提取其中的多个功能码、线圈地址、数据长度。在一个数据包序列中,每个功能码对应多个数据包,将具有相同功能码的数据包归为一类,对于每一类数据包,取数据包中的数据长度进行累加求和取平均,每个功能码可以对应一个数据包平均数据长度,得到多元组C1;每个功能码对应多个线圈地址。本发明解决了现有技术只针对Modbus TCP的功能码和线圈地址这两个特征进行提取,导致流量特征提取不足,检测精度不高的技术问题。

    一种基于多元组的Modbus TCP异常通讯检测方法和系统

    公开(公告)号:CN112968906B

    公开(公告)日:2022-02-18

    申请号:CN202110316520.3

    申请日:2021-03-25

    Abstract: 本发明公开了一种基于多元组的Modbus TCP异常通讯检测方法,包括:从工业控制网络中获取连接,每个连接包含多个Modbus TCP数据包,按照单位时间对数据包流进行分割,得到多个数据包序列。对数据包序列中的每个Modbus TCP数据包进行解析,提取其中的多个功能码、线圈地址、数据长度。在一个数据包序列中,每个功能码对应多个数据包,将具有相同功能码的数据包归为一类,对于每一类数据包,取数据包中的数据长度进行累加求和取平均,每个功能码可以对应一个数据包平均数据长度,得到多元组C1;每个功能码对应多个线圈地址。本发明解决了现有技术只针对Modbus TCP的功能码和线圈地址这两个特征进行提取,导致流量特征提取不足,检测精度不高的技术问题。

Patent Agency Ranking