应用于高电压隔离驱动芯片的高共态瞬模抗扰度滤波器

    公开(公告)号:CN110581694B

    公开(公告)日:2021-08-31

    申请号:CN201910929454.X

    申请日:2019-09-27

    Applicant: 湖南大学

    Abstract: 本发明属于集成电路设计领域,公开了应用于高电压隔离驱动芯片的高共态瞬模抗扰度滤波器。由发射端和接收端构成,其中接收端由差分式通道、四级高通RC滤波电路、差分射频放大器电路组成;其中差分式通道设计,可用于增强信号抗干扰性;四级高通RC滤波电路,信号在送入射频放大器之前,会经过四级高通RC滤波电路;差分射频放大器电路,输出单端信号用于接收端的解调电路。本发明解决了射频放大器节点电压过高的问题,实现了载波信号在干扰信号发生的情况下避免衰减过大的技术创新,同时由于四级高通滤波器会滤除因为周期性干扰产生的低频干扰,避免接收端解调电路误判的输出,从而实现很高的共态瞬模抗扰度指标。

    一种基于非冯诺依曼架构的分子动力学计算方法

    公开(公告)号:CN111554355B

    公开(公告)日:2023-04-25

    申请号:CN202010375103.1

    申请日:2020-05-05

    Applicant: 湖南大学

    Abstract: 本发明属于人工智能领域,公开了一种基于非冯诺依曼架构的分子动力学计算方法。本发明首先选定一个原子作为参考原子,并根据其初始位置构建局部坐标环境;将参考原子截断半径内每个原子的全局坐标转换为局部坐标环境下的局部坐标并求得其输入特征,作为参考原子的所有特征参数;将所有特征参数输入到一个全连接多层感知机神经网络框架,拟合得到参考原子的受力;并行求得所有原子的受力后,根据每个原子的初始位置,速度以及受力,求得所有原子新的位置;重复执行上述步骤,并记录每一次的位置结果,最终整合得到分子动力学计算的结果。本发明在确保高精度计算分子动力学的基础上,对计算效率有极大的提升,具有高精度、高效率的特点。

    应用于高电压隔离驱动芯片的高共态瞬模抗扰度滤波器

    公开(公告)号:CN110581694A

    公开(公告)日:2019-12-17

    申请号:CN201910929454.X

    申请日:2019-09-27

    Applicant: 湖南大学

    Abstract: 本发明属于集成电路设计领域,公开了应用于高电压隔离驱动芯片的高共态瞬模抗扰度滤波器。由发射端和接收端构成,其中接收端由差分式通道、四级高通RC滤波电路、差分射频放大器电路组成;其中差分式通道设计,可用于增强信号抗干扰性;四级高通RC滤波电路,信号在送入射频放大器之前,会经过四级高通RC滤波电路;差分射频放大器电路,输出单端信号用于接收端的解调电路。本发明解决了射频放大器节点电压过高的问题,实现了载波信号在干扰信号发生的情况下避免衰减过大的技术创新,同时由于四级高通滤波器会滤除因为周期性干扰产生的低频干扰,避免接收端解调电路误判的输出,从而实现很高的共态瞬模抗扰度指标。

    一种基于非冯诺依曼架构的分子动力学计算方法

    公开(公告)号:CN111554355A

    公开(公告)日:2020-08-18

    申请号:CN202010375103.1

    申请日:2020-05-05

    Applicant: 湖南大学

    Abstract: 本发明属于人工智能领域,公开了一种基于非冯诺依曼架构的分子动力学计算方法。本发明首先选定一个原子作为参考原子,并根据其初始位置构建局部坐标环境;将参考原子截断半径内每个原子的全局坐标转换为局部坐标环境下的局部坐标并求得其输入特征,作为参考原子的所有特征参数;将所有特征参数输入到一个全连接多层感知机神经网络框架,拟合得到参考原子的受力;并行求得所有原子的受力后,根据每个原子的初始位置,速度以及受力,求得所有原子新的位置;重复执行上述步骤,并记录每一次的位置结果,最终整合得到分子动力学计算的结果。本发明在确保高精度计算分子动力学的基础上,对计算效率有极大的提升,具有高精度、高效率的特点。

Patent Agency Ranking