催化剂协同外场强化二氧化碳低能耗解吸系统及方法

    公开(公告)号:CN114699883B

    公开(公告)日:2023-06-13

    申请号:CN202210431144.7

    申请日:2022-04-22

    IPC分类号: B01D53/14 B01D53/18

    摘要: 本发明涉及一种催化剂协同外场强化二氧化碳低能耗解吸系统及方法,吸收CO2后的富液经富液输送泵输运,与解吸后经贫液输送泵输运的贫液在贫富液换热器进行换热升温;升温后的富液进入解吸塔内,再生后的贫液经微波再沸器汽化后为解吸塔内的富液提供解吸能量,经微波再沸器汽化后的贫液与富液采用逆向接触,接触区域自上至下依次为带有超声波强化区的填料区、带有超声波强化区的催化区;解吸完的气混物经气液冷却器冷却和气液分离器气液分离后的液体继续注入解吸塔循环;降低了40%以上的能耗。本发明在催化剂协同超声波场/微波电磁场等外场作用下实现了二氧化碳低能耗解吸。

    一种低熔点高稳定熔盐储热材料智能筛选方法

    公开(公告)号:CN116013436A

    公开(公告)日:2023-04-25

    申请号:CN202211700380.0

    申请日:2022-12-28

    摘要: 本发明提供一种能够提高开发效率的低熔点高稳定熔盐储热材料智能筛选方法,包括以下步骤:收集已知的熔盐储热材料信息作为数据建立数据库;对数据进行初筛和归一化,将数据库内数据按比例划分为训练集和测试集;采用训练集构建机器学习预测模型,采用交叉验证评估机器学习预测模型的泛化能力;采用测试集测试机器学习预测模型的精度并以评价指标进行评价;采用机器学习预测模型对熔盐储热材料的熔点和分解温度进行预测。本发明可以用于对未知熔盐储热材料的高通量筛选,与传统的实验‑表征开发手段相比,极大的节约了成本,加快了开发速度,可广泛应用于各种储热/储能材料的设计与开发。

    一体化挥发性有机物高效催化脱除装置的优化设计方法

    公开(公告)号:CN115171801A

    公开(公告)日:2022-10-11

    申请号:CN202210785866.2

    申请日:2022-07-04

    摘要: 本发明涉及一种一体化挥发性有机物高效催化脱除装置的优化设计方法,所述方法基于计算流体力学技术的数值模拟方法,首先完成装置模型构建,使用软件对初始装置内部流场进行数值模拟,阐明装置内中心区域气体超温现象的成因及贴壁流对边缘区域气体充分受热的不利影响;在此基础上,依次增置气流分布板、导流板和聚气环优化装置内部结构,探究关键构件设计优化对其内部流场均匀性的具体提升效果。本发明有助于消除催化燃烧反应器内气体超温现象及贴壁流现象,提高装置内部流体速度场、温度场分布均匀性,进而有助于缓解局域超温现象导致的催化剂失活,在延长催化剂使用寿命的同时,提高挥发性有机物催化脱除效率,降低污染物治理所需能耗。

    多变负荷下内嵌算法融合的多目标锅炉燃烧优化控制方法

    公开(公告)号:CN115111601A

    公开(公告)日:2022-09-27

    申请号:CN202210785624.3

    申请日:2022-07-04

    IPC分类号: F23N5/00

    摘要: 本发明涉及一种多变负荷下内嵌算法融合的多目标锅炉燃烧优化控制方法,所述算法融合为随机森林算法与遗传算法融合构建多目标锅炉燃烧优化控制方法;多目标锅炉燃烧优化控制包括锅炉、风烟系统、DCS控制系统、在线监测系统、算法融合软件和模型预测控制器硬件;在锅炉燃烧优化控制寻优过程中实现减污提效。本发明基于算法融合,实现数据算法优势互补,使预测模型的精确度和稳定性更好,控制系统优化指令的可靠性更好;本发明可以实现锅炉燃烧出口NOx浓度以及热效率的精准预测,为高效低耗燃烧优化调节提供了预报信息;基于算法融合开展多目标锅炉燃烧优化,实现炉膛出口NOX浓度降低15%以上,同时锅炉热效率提高0.2%~0.6%。

    低成本高效的污染物与CO2协同吸收-解吸解耦方法

    公开(公告)号:CN114712989B

    公开(公告)日:2023-01-03

    申请号:CN202210235430.6

    申请日:2022-03-11

    IPC分类号: B01D53/14 G05B13/04

    摘要: 本发明涉及一种低成本高效的污染物与CO2协同吸收‑解吸解耦方法,建立了不同工况下的污染物与CO2协同吸收‑解吸解耦控制优化模型,以低成本高效获得高纯度液态污染物和CO2为寻优目标,构造自适应罚函数将有约束优化问题的求解转变成无约束优化问题,实现参数的实时、精确、稳定控制;辅以烟气预洗涤降温、多级中间冷却和塔顶除雾等手段,实现污染物和CO2的高效捕集。本发明吸收过程与解吸过程解耦,进行各级温度‑pH‑液气比与富液流量‑解吸温度的协同调控,实现高效低能耗污染物和CO2的协同捕集‑再生‑浓缩,降低了现有烟气净化系统与碳捕集系统分离运行的高昂成本。