铬铜难混熔合金中第二相铬的细化方法

    公开(公告)号:CN110773734A

    公开(公告)日:2020-02-11

    申请号:CN201911196789.1

    申请日:2019-11-29

    Applicant: 济南大学

    Abstract: 本发明公开了铬铜难混熔合金中第二相铬的细化方法,首先,采用化学合成法制备铬@石墨烯核壳结构;将铬粉@石墨烯核壳结构粉体与铜粉进行混粉并冷压成型;惰性气体保护下采用电弧熔炼法制备铬铜复合材料。本专利通过纳米核壳结构的构筑,重点解决铬的细化和弥散分布等限制应用的瓶颈问题。通过真空电弧熔炼工艺中快速凝固过程进一步细化铬尺寸,实现铬第二相的可控制备,解决高铬铜合金制备技术中的核心问题。研制高强度、高电导率、高寿命的弥散强化铜合金。相对于传统制备方法,第二相铬晶粒细化50%以上,复合材料硬度提升10%以上,电导率提升10-30%。获得抗电弧侵蚀、高寿命等综合性能优异的铬铜触头合金。

    一种超疏水亲油材料的制备方法

    公开(公告)号:CN110755888B

    公开(公告)日:2022-03-25

    申请号:CN201911196790.4

    申请日:2019-11-29

    Applicant: 济南大学

    Abstract: 本发明公开了一种超疏水亲油材料,由基体、增强体、联接剂和附着于基体表面的纳米涂层组成,所述的基体材料为不锈钢网、泡沫镍、泡沫铜或泡沫钛中的一种,联接剂为多巴胺,表面的纳米涂层为十六胺和十八胺的一种或两种;增强体为石墨烯。也公开了其制备方法;本发明设计思路是在泡沫镍等金属丝网骨架上面包覆一层还原氧化石墨烯,作为增强体的石墨烯为基体材料强度的起到了提升作用,石墨烯的包覆采用粒径较小的氧化石墨烯,经过还原后,石墨烯的片层较薄,能发挥石墨烯的优异性能。另外石墨烯本身就具有疏水性,在其表面修饰纳米级的低表面能物质,实现了两者的性能综合,提高了疏水亲油性和使用持久性。

    一种超疏水亲油材料的制备方法

    公开(公告)号:CN110755888A

    公开(公告)日:2020-02-07

    申请号:CN201911196790.4

    申请日:2019-11-29

    Applicant: 济南大学

    Abstract: 本发明公开了一种超疏水亲油材料,由基体、增强体、联接剂和附着于基体表面的纳米涂层组成,所述的基体材料为不锈钢网、泡沫镍、泡沫铜或泡沫钛中的一种,联接剂为多巴胺,表面的纳米涂层为十六胺和十八胺的一种或两种;增强体为石墨烯。也公开了其制备方法;本发明设计思路是在泡沫镍等金属丝网骨架上面包覆一层还原氧化石墨烯,作为增强体的石墨烯为基体材料强度的起到了提升作用,石墨烯的包覆采用粒径较小的氧化石墨烯,经过还原后,石墨烯的片层较薄,能发挥石墨烯的优异性能。另外石墨烯本身就具有疏水性,在其表面修饰纳米级的低表面能物质,实现了两者的性能综合,提高了疏水亲油性和使用持久性。

    铬铜难混熔合金中第二相铬的细化方法

    公开(公告)号:CN110773734B

    公开(公告)日:2021-11-30

    申请号:CN201911196789.1

    申请日:2019-11-29

    Applicant: 济南大学

    Abstract: 本发明公开了铬铜难混熔合金中第二相铬的细化方法,首先,采用化学合成法制备铬@石墨烯核壳结构;将铬粉@石墨烯核壳结构粉体与铜粉进行混粉并冷压成型;惰性气体保护下采用电弧熔炼法制备铬铜复合材料。本专利通过纳米核壳结构的构筑,重点解决铬的细化和弥散分布等限制应用的瓶颈问题。通过真空电弧熔炼工艺中快速凝固过程进一步细化铬尺寸,实现铬第二相的可控制备,解决高铬铜合金制备技术中的核心问题。研制高强度、高电导率、高寿命的弥散强化铜合金。相对于传统制备方法,第二相铬晶粒细化50%以上,复合材料硬度提升10%以上,电导率提升10‑30%。获得抗电弧侵蚀、高寿命等综合性能优异的铬铜触头合金。

    一种制备纳米SiC、Yb增强A356.2合金的方法

    公开(公告)号:CN107034380B

    公开(公告)日:2018-05-01

    申请号:CN201710256364.X

    申请日:2017-04-19

    Applicant: 济南大学

    Abstract: 本发明公开了一种制备纳米SiC、Yb增强A356.2合金的方法,包括以下步骤:以纳米级的SiC为颗粒增强体,经过超高温氧化处理后,再采用纳米磁控溅射设备,将高纯金属Ti均匀的包裹在氧化处理后的SiC颗粒表面;采用高纯重稀土变质和连续超声辅助熔炼,进一步提高铸造质量。本发明采用自主研发电阻炉支架为辅助设备,使得SiC颗粒处于悬浮状态就得以浇注。此制备方法简单、成本较低,生产周期短,绿色无毒且铸件具有较高的性能,产业化前景良好。

Patent Agency Ranking