一种基于深度特征与平均峰值相关能量的目标跟踪方法

    公开(公告)号:CN109035300B

    公开(公告)日:2021-03-26

    申请号:CN201810730205.3

    申请日:2018-07-05

    Abstract: 本发明提出一种基于深度特征与平均峰值相关能量的目标跟踪方法,包括:提取目标的颜色直方图特征、深度特征以及目标上下左右四个图像块的三层深度特征,并计算颜色直方图判别模型和深度特征模型;计算当前帧目标的颜色直方图特征响应和深度特征响应,并预测下帧的目标位置;计算当前帧目标响应的平均峰值相关能量;当前帧目标响应的平均峰值相关能量大于当前帧之前所有帧平均峰值相关能量均值,则判断此帧响应置信度较高,使用分层模型更新方案更新颜色直方图判别模型和深度特征模型,否则不更新;重复上述步骤直到视频序列结束。本发明将深度特征和平均峰值相关能量进行有效融合,并且采用分层的模型更新方案进一步有效的提高跟踪性能。

    一种基于卷积神经网络的无人机监控方法及系统

    公开(公告)号:CN110262529B

    公开(公告)日:2022-06-03

    申请号:CN201910510327.6

    申请日:2019-06-13

    Abstract: 本发明提出一种基于卷积神经网络的无人机监控方法,包括:采集视频序列,将所述视频序列输到图像处理器中;对采集的视频数据进行预处理,并通过链队列将预处理后的视频数据进行缓存;通过提前预训练好的卷积神经网络模型对链队列中存取的视频数据进行分析,分析后的输出结果为无人机的空间坐标,并将无人机空间坐标下发到监控终端;读取无人机的空间坐标,对所述空间坐标进行分析,计算出舵机转动量,将所述舵机转动量发送到舵机中,控制舵机转动。本发明将卷积神经网络模型应用于无人机监控,并采用多线程链队列等技术进一步优化性能。

    一种基于卷积神经网络的无人机监控方法及系统

    公开(公告)号:CN110262529A

    公开(公告)日:2019-09-20

    申请号:CN201910510327.6

    申请日:2019-06-13

    Abstract: 本发明提出一种基于卷积神经网络的无人机监控方法,包括:采集视频序列,将所述视频序列输到图像处理器中;对采集的视频数据进行预处理,并通过链队列将预处理后的视频数据进行缓存;通过提前预训练好的卷积神经网络模型对链队列中存取的视频数据进行分析,分析后的输出结果为无人机的空间坐标,并将无人机空间坐标下发到监控终端;读取无人机的空间坐标,对所述空间坐标进行分析,计算出舵机转动量,将所述舵机转动量发送到舵机中,控制舵机转动。本发明将卷积神经网络模型应用于无人机监控,并采用多线程链队列等技术进一步优化性能。

Patent Agency Ranking