-
公开(公告)号:CN119359585A
公开(公告)日:2025-01-24
申请号:CN202411295660.7
申请日:2024-09-14
Applicant: 杭州高新区(滨江)区块链与数据安全研究院 , 浙江大学
IPC: G06T5/70 , G06V10/764 , G06V10/74 , G06N3/0464 , G06N3/048 , G06N3/08
Abstract: 本申请涉及一种图结构去噪方法、装置和存储介质,其中,方法包括:基于图结构学习模型对第一图结构进行修正,得到第二图结构;基于图卷积网络模型对第二图结构进行处理,构建节点的预测置信度矩阵;根据预测置信度矩阵和置信度阈值,生成第一掩码矩阵,并采用第一掩码矩阵调整第二图结构,得到第三图结构;基于每一次调整置信度阈值后得到的第三图结构,重训练图结构学习模型和图卷积网络模型,确定目标置信度阈值;根据目标置信度阈值和预测置信度矩阵,生成第二掩码矩阵;采用第二掩码矩阵调整目标图结构。通过本申请,不会额外给图邻接矩阵增加连接(噪声),同时也避免为邻接矩阵增加额外的存储开销。
-
公开(公告)号:CN118939872A
公开(公告)日:2024-11-12
申请号:CN202410866125.6
申请日:2024-06-28
Applicant: 杭州高新区(滨江)区块链与数据安全研究院 , 浙江大学
IPC: G06F16/9535 , G06Q10/04 , G06F18/22 , G06N3/048 , G06N3/08
Abstract: 本申请涉及一种内容推荐模型的训练方法、装置、设备和存储介质,其中,该方法包括:获取训练样本和初始推荐模型;训练样本包括多个样本用户与相应推荐内容的历史交互数据;基于初始推荐模型对样本用户进行预测,得到每个样本用户与对应推荐内容的预测得分;基于成对视角和预设激活函数构建推荐损失函数;基于推荐损失函数、预测得分和历史交互数据,训练初始推荐模型,得到内容推荐模型。通过本申请,能够基于成对视角和预设激活函数构建推荐损失函数,提高推荐损失函数性能,从而提高推荐模型为用户推荐内容的推荐效果,解决了推荐损失函数性能不足,导致推荐模型的推荐效果不佳的问题。
-
公开(公告)号:CN119537677A
公开(公告)日:2025-02-28
申请号:CN202411348299.X
申请日:2024-09-25
Applicant: 杭州高新区(滨江)区块链与数据安全研究院 , 浙江大学
IPC: G06F16/9535 , G06F16/9536 , G06N3/0455 , G06F16/9538
Abstract: 本申请涉及一种基于排序目标的推荐方法、装置、计算机设备和存储介质,其中,该方法包括:获取训练样本;训练样本包括多个样本用户与相应物品的历史交互数据;基于推荐场景下的AUC指标,构建初始推荐模型的优化目标;基于优化目标、训练样本以及预设损失函数,对初始推荐模型训练得到物品推荐模型;根据物品推荐模型输出的用户表征和物品表征,预测用户与推荐物品的兴趣得分,以根据兴趣得分得到推荐物品的推荐排序结果。通过本申请,能够基于推荐场景下的AUC指标,构建初始推荐模型的优化目标,使得优化目标和推荐场景下的排序目标更加统一和适配,从而提高了推荐模型的排序效果。
-
公开(公告)号:CN119444350A
公开(公告)日:2025-02-14
申请号:CN202411404341.5
申请日:2024-10-09
Applicant: 杭州高新区(滨江)区块链与数据安全研究院 , 浙江大学
IPC: G06Q30/0601 , G06F16/9535 , G06F18/214 , G06Q30/0201 , G06Q30/0282 , G06F18/22
Abstract: 本申请涉及一种物品推荐方法、装置、计算机设备和存储介质,其中,该方法包括:获取训练数据集,训练数据集为包含各样本用户与各样本物品之间交互信息的文档数据或文本数据;针对预先建立的推荐模型,构建基于预设瑞丽散度系数和可学习的用户个性化阈值参数的推荐损失函数;将训练数据集输入推荐模型,基于推荐损失函数训练推荐模型,得到训练完备的推荐模型;推荐模型的输出为文档关于特定物品的预测评分,或文本关于特定物品的预测评分;将目标用户与目标物品之间的历史交互数据输入推荐模型,得到关于目标物品的预测评分,基于各预测评分的排序进行物品推荐。通过本申请,解决了无法向用户准确推荐物品的问题,实现了向用户准确推荐物品。
-
公开(公告)号:CN117540105B
公开(公告)日:2024-04-16
申请号:CN202410027890.9
申请日:2024-01-09
Applicant: 浙江大学
IPC: G06F16/9535 , G06F16/901 , G06N3/042 , G06Q30/0601
Abstract: 本申请涉及一种增强图推荐模型鲁棒性的方法、装置及一种推荐方法,其中,该增强图推荐模型鲁棒性的方法包括:获取待优化的初始图推荐模型,扩充所述初始图推荐模型中每个节点的邻居节点;其中,所述节点包括用户节点和物品节点;调整所述初始图推荐模型中每条边的权重,根据调整后的所述边的权重确定所述初始图推荐模型的邻接矩阵;根据所述初始图推荐模型的邻接矩阵确定所述初始图推荐模型的目标损失,对所述初始图推荐模型进行训练优化所述目标损失,得到目标图推荐模型。通过本申请提高了目标图推荐模型的鲁棒性,解决了现有的图推荐模型在分布偏移场景下的推荐效果不佳的问题。
-
公开(公告)号:CN115659007B
公开(公告)日:2023-11-14
申请号:CN202211151849.X
申请日:2022-09-21
Applicant: 浙江大学
IPC: G06F16/9535 , G06F16/9536 , G06N3/006 , G06Q50/00 , H04L51/42 , H04L51/52
Abstract: 本发明公开了一种基于多样性的动态影响力传播种子最小化方法,基于一个双向自适应贪婪算法的框架,采用基于鞅的影响力最大化算法(IMM)和基于鞅的多样性影响力最大化算法(DIMM)实现,算法核心是使用一种随机产生反向影响草图(RI‑Sketch)的采样方法,用于估计影响力扩散和多样性函数增益,具有良好的近似保证。本发明解决了如何以最小的成本在最少时间内使得影响力传播达到特定阈值的问题,克服了传统方法不能有效考虑多样性问题以及算法本身缺乏动态选择过程的弊端,可以在一定的扩散模型下有效选取合适的种子集合。
-
公开(公告)号:CN112615379B
公开(公告)日:2022-05-13
申请号:CN202011451510.2
申请日:2020-12-10
Applicant: 浙江大学
IPC: H02J3/06 , H02J3/46 , G06F30/27 , G06F113/04
Abstract: 基于分布式多智能体强化学习的电网多断面功率自动控制方法,通过多智能体与电力仿真环境交互,能够自主学习合适的用于复杂电网的多断面功率控制策略。首先根据电网控制的需要选取N个目标断面,并依此构建强化学习方法的环境、智能体、观测状态、动作、奖励函数等基本元素;其次运行多断面功率控制任务交互环境,创造初始潮流数据集;之后,为每个智能体构造基于深度神经网络的决策网络和估值网络,构建MADDPG(多智能体深度确定性策略梯度)模型并引入分布式方法进行训练自主学习最优控制策略;最后,应用训练完成的策略网络自动断面控制。本发明的优点在于,采用多智能体强化学习方法处理复杂的电网多断面功率控制问题,具有较高的控制成功率且无需专家经验,同时引入分布式方法大幅提升了智能体训练效率。
-
公开(公告)号:CN114970351B
公开(公告)日:2024-11-05
申请号:CN202210601241.6
申请日:2022-05-30
Applicant: 浙江大学
IPC: G06F30/27 , G06F113/04 , G06F119/02
Abstract: 基于注意力机制和深度强化学习的电网潮流调整方法。本发明基于注意力机制构建深度强化学习模型,能够自动学习并解决电网潮流调整任务。首先基于马尔可夫决策过程和潮流仿真程序构建强化学习交互环境,基于注意力机制构建神经网络模型作为智能体;之后随机初始化电网潮流状态,随机选择需要进行潮流调整的电网线路或断面并随机设定合理范围内的目标功率;随后智能体与环境交互采集数据存入经验池,使用双竞争深度Q网络算法训练更新智能体参数。本发明的优点在于,通过智能体自主与环境交互来学习发电机调度策略,实现了断面功率控制的自动化,相比基于专家知识的人工调整方法具有更强的自适应性;引入注意力机制,建模捕获调整目标和全局电气特征的关系,提高了算法的准确度。
-
公开(公告)号:CN117540105A
公开(公告)日:2024-02-09
申请号:CN202410027890.9
申请日:2024-01-09
Applicant: 浙江大学
IPC: G06F16/9535 , G06F16/901 , G06N3/042 , G06Q30/0601
Abstract: 本申请涉及一种增强图推荐模型鲁棒性的方法、装置及一种推荐方法,其中,该增强图推荐模型鲁棒性的方法包括:获取待优化的初始图推荐模型,扩充所述初始图推荐模型中每个节点的邻居节点;其中,所述节点包括用户节点和物品节点;调整所述初始图推荐模型中每条边的权重,根据调整后的所述边的权重确定所述初始图推荐模型的邻接矩阵;根据所述初始图推荐模型的邻接矩阵确定所述初始图推荐模型的目标损失,对所述初始图推荐模型进行训练优化所述目标损失,得到目标图推荐模型。通过本申请提高了目标图推荐模型的鲁棒性,解决了现有的图推荐模型在分布偏移场景下的推荐效果不佳的问题。
-
公开(公告)号:CN117522532A
公开(公告)日:2024-02-06
申请号:CN202410020501.X
申请日:2024-01-08
Applicant: 浙江大学
IPC: G06Q30/0601 , G06F18/214
Abstract: 本申请涉及一种流行度纠偏推荐方法、装置、电子设备及存储介质,其中,该流行度纠偏推荐方法包括:获取目标推荐模型,以最小化目标损失为优化目标,对所述目标推荐模型进行训练;其中,所述目标损失包括第一损失和第二损失,所述第一损失根据所述目标推荐模型的预测值和标签值确定,所述第二损失与目标矩阵的谱范数呈正相关,所述目标矩阵为用户表征矩阵与物品表征矩阵的转置之间乘积矩阵;通过训练后的所述目标推荐模型向用户推荐物品。通过本申请,降低了推荐模型对热门物品的偏好,缓解了推荐模型中普遍存在的流行度偏差问题。
-
-
-
-
-
-
-
-
-