-
公开(公告)号:CN117540105B
公开(公告)日:2024-04-16
申请号:CN202410027890.9
申请日:2024-01-09
申请人: 浙江大学
IPC分类号: G06F16/9535 , G06F16/901 , G06N3/042 , G06Q30/0601
摘要: 本申请涉及一种增强图推荐模型鲁棒性的方法、装置及一种推荐方法,其中,该增强图推荐模型鲁棒性的方法包括:获取待优化的初始图推荐模型,扩充所述初始图推荐模型中每个节点的邻居节点;其中,所述节点包括用户节点和物品节点;调整所述初始图推荐模型中每条边的权重,根据调整后的所述边的权重确定所述初始图推荐模型的邻接矩阵;根据所述初始图推荐模型的邻接矩阵确定所述初始图推荐模型的目标损失,对所述初始图推荐模型进行训练优化所述目标损失,得到目标图推荐模型。通过本申请提高了目标图推荐模型的鲁棒性,解决了现有的图推荐模型在分布偏移场景下的推荐效果不佳的问题。
-
公开(公告)号:CN117540105A
公开(公告)日:2024-02-09
申请号:CN202410027890.9
申请日:2024-01-09
申请人: 浙江大学
IPC分类号: G06F16/9535 , G06F16/901 , G06N3/042 , G06Q30/0601
摘要: 本申请涉及一种增强图推荐模型鲁棒性的方法、装置及一种推荐方法,其中,该增强图推荐模型鲁棒性的方法包括:获取待优化的初始图推荐模型,扩充所述初始图推荐模型中每个节点的邻居节点;其中,所述节点包括用户节点和物品节点;调整所述初始图推荐模型中每条边的权重,根据调整后的所述边的权重确定所述初始图推荐模型的邻接矩阵;根据所述初始图推荐模型的邻接矩阵确定所述初始图推荐模型的目标损失,对所述初始图推荐模型进行训练优化所述目标损失,得到目标图推荐模型。通过本申请提高了目标图推荐模型的鲁棒性,解决了现有的图推荐模型在分布偏移场景下的推荐效果不佳的问题。
-