一种基于协同图卷积和学习风格的课程推荐方法

    公开(公告)号:CN118551115A

    公开(公告)日:2024-08-27

    申请号:CN202410741760.1

    申请日:2024-06-11

    Abstract: 本发明公开了一种基于图卷积网络和学习风格的课程推荐方法,包括如下步骤:步骤1、预测评分,将来自学习者相连的课程嵌入信息编码为学习者的一阶嵌入信息,并通过一阶嵌入信息得到高阶嵌入信息;将高阶嵌入信息中的每一阶嵌入信息通过聚合函数聚合到单个向量中得到聚合嵌入表示;对学习者和课程的聚合嵌入表示进行内积运算,得到学习者对该课程的预测评分;步骤2、分别定义学习者概要和课程概要,计算学习风格向量,根据学习者学习风格向量和课程学习风格向量,得到课程学习风格相似度评分;步骤3、通过学习风格相似度评分对预测评分列表进行优化,得到协同预测评分,该方法解决基于图卷积网络推荐算法忽略学习者自身学习模式的问题。

    一种三维自动乳腺超声图像聚类方法

    公开(公告)号:CN118674955A

    公开(公告)日:2024-09-20

    申请号:CN202410594154.1

    申请日:2024-05-14

    Abstract: 一种自动乳腺超声图像聚类方法,属于机器学习技术领域。本发明通过考虑生物数据聚类的子空间聚类算法和求解该算法的迭代优化算法,以及CAD系统的实际应用,能够提供更有效、快速和经济可行的三维ABUS影像的乳腺癌早期筛查方案;本发明提出封装数据的局部结构并对特征应用非负约束的图像表征方法,来兼顾数据的全局和局部结构特征;同时将流形正则化器合并到图像表征中以考虑数据的流形结构,由此得到GLSR算法框架;然后基于ADMM迭代方法开发了一种高效的迭代算法来保证我们提出的GLSR算法得到局部最优解并保证收敛。

Patent Agency Ranking