符合泊松分布的有序多分类变量的数据规格化方法

    公开(公告)号:CN108536794A

    公开(公告)日:2018-09-14

    申请号:CN201810281245.4

    申请日:2018-04-02

    Abstract: 本发明的符合泊松分布的有序多分类变量的数据规格化方法,设数据样本的属性A符合泊松分布,属性A的m个类别经自然编码后的原始值分别为v1、v2、…、vm,vi、vj∈Z且vi≠vj,1≤i≤m,1≤j≤m,样本中属性A的总数量记为N,属性A中类别k下的数量记为nk;有序多分类变量的属性A规格化后的数据值v′k通过公式(1)进行求取:其中,1≤k≤m, 为属性A中m个类别原始值的均值,其通过如下公式进行求取。本发明的数据规格化方法,使得处理后的变量可应用在如神经网络、最近邻分类、聚类等基于对象距离的挖掘算法中,有益效果显著,适于应用推广。

    一种基于unity3d的知识图谱3D可视化方法

    公开(公告)号:CN111125347B

    公开(公告)日:2023-10-27

    申请号:CN201911376996.5

    申请日:2019-12-27

    Abstract: 本发明的基于unity3d的知识图谱3D可视化方法,包括:a).摄像机、天空盒和场景初始化;b).三元组数据获取;c).预制体的创建及三维物理结构组织;d).三维力学模型构建;e).帧循环;f).沉浸式摄影机脚本;g).全局摄影机脚本;h).属性信息显示及UI绘制;i).检索功能及传送功能;j).沉浸视图、全局视图切换。本发明的基于unity3d的知识图谱3D可视化方法,具有良好的可移植性和可扩展性,可以发布到web、手机、PC等多种平台,而不会像WebGL等技术一样开发后即对平台具有高度依赖;另一方面表现在未来可以方便的扩展至虚拟现实、增强现实等新兴的显示技术上,实现更广阔、更沉浸、更具互动性的知识图谱3D可视化。

    一种基于K8s的多租户深度学习模型研发系统及方法

    公开(公告)号:CN114385126B

    公开(公告)日:2022-06-21

    申请号:CN202210291793.1

    申请日:2022-03-24

    Abstract: 本发明属于资源调度技术领域,提供了一种基于K8s的多租户深度学习模型研发系统及方法,基于Docker、K8s等主流技术,针对不同租户的深度学习模型研发需求,通过微服务总线、微服务控制器和资源服务组件等统一数据、接口、资源标准,建立基于K8s的隔离空间,实现数据存储、模型设计、模型训练、模型评估、模型发布的自动化容器集群环境搭建和参数配置,支持资源管理、用户管理、权限管理、项目管理、数据管理、模型管理等操作,帮助用户快速高效地进行深度学习模型研发,解决了资源监控、自定义模型构建等方面不完善的问题,极大地提高AI应用开发的效率和资源利用率,满足多种业务场景的需求。

Patent Agency Ranking