-
公开(公告)号:CN118484540B
公开(公告)日:2024-10-18
申请号:CN202410946552.5
申请日:2024-07-16
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院) , 山东省公安厅
IPC: G06F16/35 , G06F18/213 , G06F18/2415 , G06N3/0442 , G06N3/0464 , G06N3/0455
Abstract: 本发明属于文本分类技术领域,具体涉及一种基于特征感知的文本分类方法及系统,包括:获取待分类文本数据;提取所获取的文本数据的全局特征和局部特征;采用多头注意力机制处理所提取的文本数据的全局特征和局部特征;基于特征感知算法优化处理后的文本数据的全局特征和局部特征,动态调整特征选择和网络参数,得到文本表示特征;根据所得到的文本表示特征计算待分类文本的分类概率,完成待分类文本的分类。
-
公开(公告)号:CN118484321A
公开(公告)日:2024-08-13
申请号:CN202410946509.9
申请日:2024-07-16
Applicant: 齐鲁工业大学(山东省科学院) , 山东省计算中心(国家超级计算济南中心) , 山东省公安厅
IPC: G06F9/54 , G06N5/01 , G06F18/23213 , G06F18/2431
Abstract: 本发明涉及计算机存储技术领域,提供了一种基于组级学习的缓存学习方法及系统。该方法包括,获取组级特征和子组级特征;当缓存需要进行淘汰时,根据待预测组的组级特征,采用已训练的组的梯度提升树模型,得到该组的预测效用值;根据组内子组的子组级特征,采用已训练的子组的梯度提升树模型,得到该子组的预测效用值;分别将组的预测效用值和子组的预测效用值按照数值大小进行排序;从效用值最低的组开始,选择与该组写入时间最接近的N‑1个组,构成一个包含N个组的淘汰候选集合;从N个组的淘汰候选集合,选择保留效用值高于设定值的若干个子组,其余淘汰出缓存。本发明能够更准确地预测数据对象组的效用,且减少不必要的缓存淘汰。
-
公开(公告)号:CN108536794A
公开(公告)日:2018-09-14
申请号:CN201810281245.4
申请日:2018-04-02
Applicant: 山东省计算中心(国家超级计算济南中心) , 山东省公安厅
IPC: G06F17/30
Abstract: 本发明的符合泊松分布的有序多分类变量的数据规格化方法,设数据样本的属性A符合泊松分布,属性A的m个类别经自然编码后的原始值分别为v1、v2、…、vm,vi、vj∈Z且vi≠vj,1≤i≤m,1≤j≤m,样本中属性A的总数量记为N,属性A中类别k下的数量记为nk;有序多分类变量的属性A规格化后的数据值v′k通过公式(1)进行求取:其中,1≤k≤m, 为属性A中m个类别原始值的均值,其通过如下公式进行求取。本发明的数据规格化方法,使得处理后的变量可应用在如神经网络、最近邻分类、聚类等基于对象距离的挖掘算法中,有益效果显著,适于应用推广。
-
公开(公告)号:CN118484321B
公开(公告)日:2024-10-18
申请号:CN202410946509.9
申请日:2024-07-16
Applicant: 齐鲁工业大学(山东省科学院) , 山东省计算中心(国家超级计算济南中心) , 山东省公安厅
IPC: G06F9/54 , G06N5/01 , G06F18/23213 , G06F18/2431
Abstract: 本发明涉及计算机存储技术领域,提供了一种基于组级学习的缓存学习方法及系统。该方法包括,获取组级特征和子组级特征;当缓存需要进行淘汰时,根据待预测组的组级特征,采用已训练的组的梯度提升树模型,得到该组的预测效用值;根据组内子组的子组级特征,采用已训练的子组的梯度提升树模型,得到该子组的预测效用值;分别将组的预测效用值和子组的预测效用值按照数值大小进行排序;从效用值最低的组开始,选择与该组写入时间最接近的N‑1个组,构成一个包含N个组的淘汰候选集合;从N个组的淘汰候选集合,选择保留效用值高于设定值的若干个子组,其余淘汰出缓存。本发明能够更准确地预测数据对象组的效用,且减少不必要的缓存淘汰。
-
公开(公告)号:CN118484540A
公开(公告)日:2024-08-13
申请号:CN202410946552.5
申请日:2024-07-16
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院) , 山东省公安厅
IPC: G06F16/35 , G06F18/213 , G06F18/2415 , G06N3/0442 , G06N3/0464 , G06N3/0455
Abstract: 本发明属于文本分类技术领域,具体涉及一种基于特征感知的文本分类方法及系统,包括:获取待分类文本数据;提取所获取的文本数据的全局特征和局部特征;采用多头注意力机制处理所提取的文本数据的全局特征和局部特征;基于特征感知算法优化处理后的文本数据的全局特征和局部特征,动态调整特征选择和网络参数,得到文本表示特征;根据所得到的文本表示特征计算待分类文本的分类概率,完成待分类文本的分类。
-
公开(公告)号:CN118503152B
公开(公告)日:2024-10-18
申请号:CN202410953981.5
申请日:2024-07-17
Applicant: 齐鲁工业大学(山东省科学院) , 山东省计算中心(国家超级计算济南中心) , 山东省公安厅
IPC: G06F12/10 , G06N3/0442 , G06N3/045 , G06N3/08
Abstract: 本发明涉及计算机缓存技术领域,提供了一种基于门控循环与多头注意力机制的缓存替换方法及系统。该方法包括,将获取的当前访问的缓存行地址和程序计数器,转换为嵌入向量;基于嵌入向量以及前一时间步的隐藏状态,采用门控循环单元,得到当前时间步的隐藏状态,作为下一时间步门控循环单元的输入之一;将拼接的若干时间步的隐藏状态和缓存行地址输入多头注意力机制,得到上下文向量;将上下文向量输入全连接层,输出每个缓存行被替换的概率。本发明将机器学习应用于缓存优化,以满足不断变化的数据处理需求,提高缓存系统的性能和智能程度,更好地应对日益复杂和多边的数据需求,实现更高效的缓存系统。
-
公开(公告)号:CN118503152A
公开(公告)日:2024-08-16
申请号:CN202410953981.5
申请日:2024-07-17
Applicant: 齐鲁工业大学(山东省科学院) , 山东省计算中心(国家超级计算济南中心) , 山东省公安厅
IPC: G06F12/10 , G06N3/0442 , G06N3/045 , G06N3/08
Abstract: 本发明涉及计算机缓存技术领域,提供了一种基于门控循环与多头注意力机制的缓存替换方法及系统。该方法包括,将获取的当前访问的缓存行地址和程序计数器,转换为嵌入向量;基于嵌入向量以及前一时间步的隐藏状态,采用门控循环单元,得到当前时间步的隐藏状态,作为下一时间步门控循环单元的输入之一;将拼接的若干时间步的隐藏状态和缓存行地址输入多头注意力机制,得到上下文向量;将上下文向量输入全连接层,输出每个缓存行被替换的概率。本发明将机器学习应用于缓存优化,以满足不断变化的数据处理需求,提高缓存系统的性能和智能程度,更好地应对日益复杂和多边的数据需求,实现更高效的缓存系统。
-
公开(公告)号:CN114816699B
公开(公告)日:2025-03-18
申请号:CN202210372549.8
申请日:2022-04-11
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
Abstract: 本发明公开了基于温度预测的数据中心作业调度方法及系统,包括:获取数据中心机柜相关参数、机柜中服务器的相关参数、作业队列中待调度作业所需资源大小和冷却设备的相关参数;对获取的数据进行预处理,对于预处理后的数据进行特征筛选;基于训练后的机器学习模型和筛选得到的特征,预测出未来设定时间段内机柜的温度,选出温度最低的机柜;将待调度作业,在温度最低的机柜的若干个服务器中进行初始调度和优化调度,通过多次迭代,选出服务器与待调度作业之间的最佳映射方案;根据最佳映射方案实现待调度作业的调度。
-
公开(公告)号:CN119474622A
公开(公告)日:2025-02-18
申请号:CN202510059378.7
申请日:2025-01-15
Applicant: 山东省计算中心(国家超级计算济南中心)
Abstract: 本公开提供了一种面向电磁有限元方程组的并行迭代求解方法及系统,涉及电磁有限元技术领域,包括:构建待求解的电磁有限元方程组#imgabs0#;将电磁有限元方程组划分为多个计算子任务,将子任务的子矩阵块#imgabs1#和子右端项向量#imgabs2#分配给超级计算机中的各进程;利用初始化后的Householder‑GMRES算法,各进程并行进行子任务的计算,得到各进程的局部最优解#imgabs3#;对各进程的局部最优解#imgabs4#进行汇总,得到电磁有限元方程组的最优解#imgabs5#;本发明将电磁有限元、Householder‑GMRES算法、并行计算三者结合起来,利用并行优化技术提高电磁有限元线性方程组求解效率。
-
公开(公告)号:CN119249857A
公开(公告)日:2025-01-03
申请号:CN202411160062.9
申请日:2024-08-22
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06F30/27 , G06N3/0455 , G06N3/0895
Abstract: 本发明属于海洋科学和数据处理技术领域,提供了一种面向海洋观测数据的基座模型构建方法及系统,包括构建海洋基座模型;将获取的海洋时序数据输入海洋基座模型中,构建海洋时序数据的时间戳粒度级的Token序列,将时间戳前的偏移延迟特征向量和协变量向量连接到时间戳Token向量中;结合因果自注意力机制和旋转位置嵌入,将Token序列的特征映射到Transformer的解码器,生成下一步时间戳序列;定义损失函数,优化模型参数,得到训练好的海洋基座模型。本发明在多种海洋数据集上学习通用的特征表示和时序模式,从而构建一个具有高度泛化能力的海洋通用模型,不仅能够处理大规模、多源的海洋数据,还能够捕捉数据的时序特性,提供实时的数据处理和预测能力。
-
-
-
-
-
-
-
-
-