-
公开(公告)号:CN113988786A
公开(公告)日:2022-01-28
申请号:CN202111233057.2
申请日:2021-10-22
Applicant: 安徽农业大学 , 安徽安宠宠物用品有限公司
Abstract: 本发明公开了一种基于双层异构图神经网络的企业协同制造决策方法,采用图神经网络对产业链以及企业内部工作关系进行建模,并利用企业数据进行训练。相较于传统的针对单一领域的工作流建模方法,本发明可获得应用范围更广,覆盖多个产业流程的关系模型。采用双层异构图神经网络,首先将产业链模型训练产生粗粒度的生产决策,然后将粗粒度决策与企业内部协同网络进行耦合,进一步产生细粒度的生产决策。采用双层异构图神经网络方法可直接对其中复杂企业关系和企业内部关系进行耦合分析,针对所做出的决策,将其输入决策评价系统进行分析,得到决策的综合质量评估,形成对最终决策结果的反馈优化,较传统人工决策和单一行业决策更全面,可行度更高。
-
公开(公告)号:CN113988786B
公开(公告)日:2024-08-13
申请号:CN202111233057.2
申请日:2021-10-22
Applicant: 安徽农业大学 , 安徽安宠宠物用品有限公司
IPC: G06Q10/101 , G06Q50/04 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了一种基于双层异构图神经网络的企业协同制造决策方法,采用图神经网络对产业链以及企业内部工作关系进行建模,并利用企业数据进行训练。相较于传统的针对单一领域的工作流建模方法,本发明可获得应用范围更广,覆盖多个产业流程的关系模型。采用双层异构图神经网络,首先将产业链模型训练产生粗粒度的生产决策,然后将粗粒度决策与企业内部协同网络进行耦合,进一步产生细粒度的生产决策。采用双层异构图神经网络方法可直接对其中复杂企业关系和企业内部关系进行耦合分析,针对所做出的决策,将其输入决策评价系统进行分析,得到决策的综合质量评估,形成对最终决策结果的反馈优化,较传统人工决策和单一行业决策更全面,可行度更高。
-
公开(公告)号:CN113985879B
公开(公告)日:2024-02-02
申请号:CN202111260761.7
申请日:2021-10-28
Applicant: 安徽安宠宠物用品有限公司 , 安徽农业大学
Abstract: 本发明公开了基于历史数据动态优化的智能移动巡检系统及方法,结合巡检数据采用多目标蚱蜢优化模型动态优化出不同时间段下不同生产车间和仓库的巡检项目及关键点;优化后的巡检项目及关键点再次采用多目标蚱蜢优化模型训练学习,进一步动态优化出不同生产车间和仓库的巡检点优先级、巡检次数和巡检时间;再进一步采用二维(2D)网格模型的路径规划算法优化出巡检路线;在巡检过程中,采用基于YOLOX模型的图像识别技术和三维激光雷达,获取巡检车的实时行驶数据和实时巡检数据,对此数据进行处理,实现巡检车实时自动行驶、自动巡检。解决不同时间段、生产车间、仓库的巡检点、巡检项
-
公开(公告)号:CN113985879A
公开(公告)日:2022-01-28
申请号:CN202111260761.7
申请日:2021-10-28
Applicant: 安徽安宠宠物用品有限公司 , 安徽农业大学
IPC: G05D1/02
Abstract: 本发明公开了基于历史数据动态优化的智能移动巡检系统及方法,结合巡检数据采用多目标蚱蜢优化模型动态优化出不同时间段下不同生产车间和仓库的巡检项目及关键点;优化后的巡检项目及关键点再次采用多目标蚱蜢优化模型训练学习,进一步动态优化出不同生产车间和仓库的巡检点优先级、巡检次数和巡检时间;再进一步采用二维(2D)网格模型的路径规划算法优化出巡检路线;在巡检过程中,采用基于YOLOX模型的图像识别技术和三维激光雷达,获取巡检车的实时行驶数据和实时巡检数据,对此数据进行处理,实现巡检车实时自动行驶、自动巡检。解决不同时间段、生产车间、仓库的巡检点、巡检项目、巡检次数和巡检路线等动态优化问题,提高巡检的效率和准确性。
-
公开(公告)号:CN115860875B
公开(公告)日:2025-05-09
申请号:CN202211671672.6
申请日:2022-12-26
Applicant: 安徽农业大学
IPC: G06Q30/0601 , G06F18/25 , G06F18/241
Abstract: 本发明涉及人工智能技术领域,且公开了一种基于双线性池化的多模态知识融合的商品推荐方法,包括提取用户在电商平台的行为数据,对收集的用户行为数据进行预处理,以及分析评估,用深度学习的图像特征采集器、文本特征采集器、时间序列特征采集器、音频特征采集器和视频特征采集器对收集的数据抽取特征,根据各种单模态特征采集器的特征利用双线性池化的多模态知识融合抽取模态交互的深层特征,通过对抽取的多模态融合的深层特征信息。该基于双线性池化的多模态知识融合的商品推荐方法,可以通过深度利用海量的多模态的用户数据,利用分层次双线性池化融合多模态特征,精准判断消费者的喜好准确推送意向商品。
-
公开(公告)号:CN119129611A
公开(公告)日:2024-12-13
申请号:CN202411264320.8
申请日:2024-09-10
Applicant: 安徽农业大学
Abstract: 本发明公开了一种基于全向注意力机制的翻译方法,涉及自然语言处理的技术领域,包括,收集和处理平行语料数据,通过知识蒸馏生成蒸馏数据集,利用蒸馏数据集训练自回归翻译模型并解决多模式问题,将自回归模型转换为非自回归模型并进行训练直至收敛,本发明通过引入全向注意力机制和课程学习策略,有效的解决了非自回归翻译模型中出现的多模式问题,显著提升了翻译质量和训练效率,从而实现了更准确的翻译输出效果。
-
公开(公告)号:CN117152736A
公开(公告)日:2023-12-01
申请号:CN202311139529.7
申请日:2023-09-05
Applicant: 安徽农业大学
IPC: G06V20/68 , G06V10/20 , G06V10/26 , G06V10/82 , G06V10/762 , G06N3/006 , G06N3/0464 , G06N3/08
Abstract: 本发明涉及人工智能采摘技术领域,且公开了一种深度学习和群智能算法的水果采摘优化模型的方法,包括以下步骤:S1、收集自然环境下的水果果实图片作为训练数据,并对数据进行预处理;S2、设计一种改进U‑Net模型的CA U‑Net语义分割网络,将U‑Net模型的主干网络VGG16更换为轻量化的MobileNet‑V3结构;S3、将MoblieNet‑v3主干特征网络中的SE注意力机制模块替换为Coordinate Attention注意力机制。该深度学习和群智能算法的水果采摘优化模型的方法,通过利用计算机视觉技术实现图像分割的果实采摘顺序算法,提高了果实采摘效率和果实定位精度,解决了现有技术中采摘过程中的浪费和伤害,同时还能够避免果实的腐烂和损坏,无法提高果实的保质期和市场价值的问题。
-
公开(公告)号:CN116258573A
公开(公告)日:2023-06-13
申请号:CN202310123335.1
申请日:2023-02-07
Applicant: 安徽农业大学
Abstract: 本发明公开了一种农产品供应链信用风险识别与演化预测方法,属于供应链信用风险预测技术领域;方法包括如下步骤:对农产品供应链中节点的连续时间动态关系进行建模;建立异步传输连续时空感知图神经网络模型;训练模型,并基于模型生产预测,给出节点信用风险等级评估及未来演化方向。通过构建连续时间动态农产品供应链关系图,并采用连续时空感知图神经网络,可以更全面提取企业领域的信息,进行更好的信用风险及其演化分析,为企业形成对最终决策提供参考,较传统决策方法更全面,可行度更高。
-
公开(公告)号:CN115860875A
公开(公告)日:2023-03-28
申请号:CN202211671672.6
申请日:2022-12-26
Applicant: 安徽农业大学
IPC: G06Q30/0601 , G06F18/25 , G06F18/241
Abstract: 本发明涉及人工智能技术领域,且公开了一种基于双线性池化的多模态知识融合的商品推荐方法,包括提取用户在电商平台的行为数据,对收集的用户行为数据进行预处理,以及分析评估,用深度学习的图像特征采集器、文本特征采集器、时间序列特征采集器、音频特征采集器和视频特征采集器对收集的数据抽取特征,根据各种单模态特征采集器的特征利用双线性池化的多模态知识融合抽取模态交互的深层特征,通过对抽取的多模态融合的深层特征信息。该基于双线性池化的多模态知识融合的商品推荐方法,可以通过深度利用海量的多模态的用户数据,利用分层次双线性池化融合多模态特征,精准判断消费者的喜好准确推送意向商品。
-
公开(公告)号:CN115269864B
公开(公告)日:2025-05-09
申请号:CN202210746863.8
申请日:2022-06-28
Applicant: 安徽农业大学
IPC: G06N5/022 , G06F16/36 , G06F40/295 , G06Q10/0631 , G06Q10/0639 , G06Q30/0207 , G06Q50/02 , G06Q40/03 , H04L67/1097
Abstract: 本发明公开了一种基于区块链的农业众包知识图谱的构建方法及系统,本发明在农业知识图谱的构建中引入了众包和区块链技术,将农业知识图谱构建环节任务交给众包完成,将区块链技术引入众包农业知识图谱的构建流程中,提出融合区块链智能合约的众包农业知识图谱构建策略,并将众包构建知识图谱的过程上链,实现数据的不可篡改、可追溯、可信任;基于众包构建的农业知识图谱数据,采取联合抽取法和多种补全方式,提高了对众包数据三元组信息的抽取效率和知识图谱完整性;建立众包工人信用评价体系,有效提高了众包完成质量和专业领域人员长期参与积极性;本发明有效解决了农业知识图谱构建中数据易泄露、可信度低、构建效率低、质量难评估等问题。
-
-
-
-
-
-
-
-
-