-
公开(公告)号:CN113988786A
公开(公告)日:2022-01-28
申请号:CN202111233057.2
申请日:2021-10-22
Applicant: 安徽农业大学 , 安徽安宠宠物用品有限公司
Abstract: 本发明公开了一种基于双层异构图神经网络的企业协同制造决策方法,采用图神经网络对产业链以及企业内部工作关系进行建模,并利用企业数据进行训练。相较于传统的针对单一领域的工作流建模方法,本发明可获得应用范围更广,覆盖多个产业流程的关系模型。采用双层异构图神经网络,首先将产业链模型训练产生粗粒度的生产决策,然后将粗粒度决策与企业内部协同网络进行耦合,进一步产生细粒度的生产决策。采用双层异构图神经网络方法可直接对其中复杂企业关系和企业内部关系进行耦合分析,针对所做出的决策,将其输入决策评价系统进行分析,得到决策的综合质量评估,形成对最终决策结果的反馈优化,较传统人工决策和单一行业决策更全面,可行度更高。
-
公开(公告)号:CN113988786B
公开(公告)日:2024-08-13
申请号:CN202111233057.2
申请日:2021-10-22
Applicant: 安徽农业大学 , 安徽安宠宠物用品有限公司
IPC: G06Q10/101 , G06Q50/04 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了一种基于双层异构图神经网络的企业协同制造决策方法,采用图神经网络对产业链以及企业内部工作关系进行建模,并利用企业数据进行训练。相较于传统的针对单一领域的工作流建模方法,本发明可获得应用范围更广,覆盖多个产业流程的关系模型。采用双层异构图神经网络,首先将产业链模型训练产生粗粒度的生产决策,然后将粗粒度决策与企业内部协同网络进行耦合,进一步产生细粒度的生产决策。采用双层异构图神经网络方法可直接对其中复杂企业关系和企业内部关系进行耦合分析,针对所做出的决策,将其输入决策评价系统进行分析,得到决策的综合质量评估,形成对最终决策结果的反馈优化,较传统人工决策和单一行业决策更全面,可行度更高。
-