一种融合UKF与神经网络的涡扇发动机推力实时估计方法

    公开(公告)号:CN116933654A

    公开(公告)日:2023-10-24

    申请号:CN202310963903.9

    申请日:2023-08-02

    Abstract: 本发明提供了一种融合UKF与神经网络的涡扇发动机推力实时估计方法,属于信息技术领域。针对传统UKF建立涡扇发动机机载自适应模型时存在的精度低、收敛速度慢、易发散、计算速度慢等问题,首先根据改进LM‑IUKF方法建立涡扇发动机的机载自适应模型;其次利用机载自适应模型的数据建立涡扇发动机的LSTM神经网络模型;最后将基于改进LM‑IUKF方法的机载自适应模型与LSTM模型相结合,使用LSTM模型替换LM‑IUKF在参数估计测量更新过程中的非线性机理模型。本发明能够在保证推力估计精度的前提下,有效解决精度低、收敛速度慢、易发散、计算速度慢等问题,实现在25ms的运行周期下对推力的高精度和高实时性估计,对推力实时控制的实际应用具有重要意义。

Patent Agency Ranking